, Volume 586, Issue 1, pp 155–166 | Cite as

Differentiation of Chara intermedia and C. baltica compared to C. hispida based on morphology and amplified fragment length polymorphism

  • Michael G. BoegleEmail author
  • Susanne Schneider
  • Beate Mannschreck
  • Arnulf Melzer
Primary Research Paper


Charophytes are macrophytic green algae, occurring in standing and running waters throughout the world. Species descriptions of charophytes are contradictive and different determination keys use various morphologic characters for species discrimination. Chara intermedia Braun, C. baltica Bruzelius and C. hispida Hartman are treated as three species by most existing determination keys, though their morphologic differentiation is based on different characteristics. Amplified fragment length polymorphism (AFLP) was used to detect genetically homogenous groups within the C. intermedia-C. baltica-C. hispida-cluster, by the analysis of 122 C. intermedia, C. baltica and C. hispida individuals from central and northern Europe. C. hispida clustered in a distinct genetic group in the AFLP analysis and could be determined morphologically by its aulacanthous cortification. However, for C. intermedia and C. baltica no single morphologic character was found that differentiated the two genetic groups, thus C. intermedia and C. baltica are considered as cryptic species. All C. intermedia specimen examined came from freshwater habitats, whereas the second group, C. baltica, grew in brackish water. We conclude that the species differentiation between C. intermedia and C. baltica, which is assumed to be reflected by the genetic discrimination groups, corresponds more with ecological (salinity preference) than morphologic characteristics.

Based on the genetic analysis three differing colonization models of the Baltic Sea and the Swedish lakes with C. baltica and C. intermedia were discussed. As samples of C. intermedia and C. baltica have approximately the same Jaccard coefficient for genetic similarity, we suggest that C. baltica colonized the Baltic Sea after the last glacial maximum from refugia along the Atlantic and North Sea coasts. Based on the similarity of C. intermedia intermediate individuals of Central Europe and Sweden we assume a colonization of the Swedish lakes from central Europe.


Charophytes Salinity Genetic fingerprinting Habitat Cryptic species Baltic Sea Dispersal 



We thank Markus Heinrichs and Irmgard Blindow for correcting the English and for helpful comments on the manuscript. Appreciation is extended to the many colleagues who helped in the charophyte collection. The project was financially supported by the German Research Foundation (DFG).


  1. Adams, R. P., J. A. Morris, R. N. Pandey & A. E. Schwarzbach, 2005. Cryptic speciation between Juniperus deltoides and Juniperus oxycedrus (Cupressaceae) in the Mediterranean. Biochemical Systematics and Ecology 33: 771–787.CrossRefGoogle Scholar
  2. Anadon, P., R. Utrilla & A. Vazquez, 2002. Mineralogy and Sr–Mg geochemistry of charophyte carbonates: a new tool for paleolimnological research. Earth and Planetary Science Letters 197: 205–214.CrossRefGoogle Scholar
  3. Benzie, J. A. H., E. Ballment, J. R. M. Chisholm & J. M. Jaubert, 2000. Genetic variation in the green alga Caulerpa taxifolia. Aquatic Botany 66: 131–139.CrossRefGoogle Scholar
  4. Bisson, M. A. & D. Bartholomew, 1984. Osmoregulation or turgor regulation in Chara? Plant Physiology 74: 252–255.PubMedGoogle Scholar
  5. Bhattacharya, D. & L. Medlin, 1998. Algal phylogeny and the origin of land plants 1. Plant Physiology 116: 9–15.CrossRefGoogle Scholar
  6. Björck, S., 1995. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quaternary International 27: 19–90.CrossRefGoogle Scholar
  7. Blindow, I., 2000. Distribution of Charophytes along the Swedish coast in relation to salinity and eutrophication. International Review of Hydrobiology 85: 707–717.CrossRefGoogle Scholar
  8. Blindow, I. & M. Schütte, 2006. Elongation and mat formation of Chara aspera under different light and salinity conditions. Hydrobiologia (in revision).Google Scholar
  9. Charalambidou, I. & L. Santamaria, 2005. Field evidence for the potential of waterbirds as dispersers of aquatic organisms. Wetlands 25: 252–258.CrossRefGoogle Scholar
  10. Corillion, R., 1972. Les Charophycees de France et d’ Europe Occidentale. Otto Koeltz Verlag, Koenigstein-Taunus.Google Scholar
  11. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  12. Fox, A. D., T. A. Jones, R. Singleton & A. D. Q. Agnew, 1994. Food supply and the effects of recreational disturbance on the abundance and distribution of wintering Pochard on a gravel pit complex in southern Britain. Hydrobiologia 280: 253–261.CrossRefGoogle Scholar
  13. Garcia-Mas, J., M. Oliver & H. Gomez-Paniagua, 2000. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theoretical and Applied Genetics 101: 860–864.CrossRefGoogle Scholar
  14. Gleeson, D. M., R. L. J. Howitt & N. Ling, 1999. Cryptic species of mudfish in New Zealand. Molecular Ecology 8: 47–57.PubMedCrossRefGoogle Scholar
  15. Gollerbakh, M. M. & L. K. Krasavina, 1983. Translated by Z. Sinkeviciene. Opredelitel´ presnovodnykh vodoroslej SSSR, Vypusk 14, Kharovyje codorosili-Charophyta. Leningrad “Nauka”.Google Scholar
  16. Hampe, A., J. Arroyo, P. Jordano & R. J. Petit, 2003. Rangewide phylogeography of a bird-dispersed Eurasian shrub: contrasting Mediterranean and temperate glacial refugia. Molecular Ecology 12: 3415–3426.PubMedCrossRefGoogle Scholar
  17. Hongtrakul, V., G. M. Huestis & S. J. Knapp, 1997. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theoretical and Applied Genetics 95: 400–407.CrossRefGoogle Scholar
  18. Kardolus, J. P., H. J. Van Eck & S. J. Van den Berg, 1998. The potential of AFLPs in biosystematics: a first application in Solanum taxonomy (Solanaceae). Plant Systematic and Evolution 210: 87–103.CrossRefGoogle Scholar
  19. Karol, K. G., R. M. McCourt, M. T. Cimino & C. F. Delwiche, 2001. The closest living relatives of land plants. Science 294: 2351–2353.PubMedCrossRefGoogle Scholar
  20. Knapton, R. W. & S. A. Petrie, 1999. Changes in distribution and abundance of submerged macrophytes in the Inner Bay at Long Point, Lake Erie: implications for foraging waterfowl. Journal of Great Lakes Research 25: 783–798.CrossRefGoogle Scholar
  21. Kontula, T. & R. Väinölä, 2001 Postglacial colonization of Northern Europe by distinct phylogeographic lineages of the bullhead, Cottus gobio. Molecular Ecology 10: 1983–2002.PubMedCrossRefGoogle Scholar
  22. Krause, W., 1997. Charales (Charophyceae). In Ettl, A., G. Gärtner, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Vol. 18, G. Fischer, Jena.Google Scholar
  23. Kremling, K., J. J. S. Tokos, L. Brugmann & H. P. Hansen, 1997. Variability of dissolved and particulate trace metals in the Kiel and Mecklenburg Bights of the Baltic Sea 1990–1992. Marine Pollution Bulletin 34: 112–122.CrossRefGoogle Scholar
  24. Leskinen, E., C. Alström-Rapaport & P. Pamilo, 2004. Phylogeographical structure, distribution and genetic variation of the green algae Ulva intestinalis and U. compressa (Chlorophyta) in the Baltic Sea area. Molecular Ecology 13: 2257– 2265.PubMedCrossRefGoogle Scholar
  25. Link, W., C. Dixkens, M. Singh, M. Schwall & A. E. Melchinger, 1995. Genetic diversity in European and Mediterranean faba bean germ plasm revealed by RAPD markers. Theoretical and Applied Genetics 90: 27–32.CrossRefGoogle Scholar
  26. Mannschreck, B., 2003. Genetische und morphologische Differenzierung ausgewählter Arten der Gattung Chara. Doktorarbeit TU-München. Shaker Verlag, Aachen.Google Scholar
  27. Mannschreck, B., T. Fink & A. Melzer, 2002. Biosystematics of selected Chara species (Charophyta) using amplified fragment length polymorphism. Phycologia 41: 657–666.CrossRefGoogle Scholar
  28. Marin, B. & M. Melkonian, 1999. Mesostigmatophyceae, a new class of streptophyte green algae revealed by SSU rRNA sequence comparisons. Protist 150: 399–417.PubMedCrossRefGoogle Scholar
  29. McClintock, K. A. & M. J. Waterway, 1994. Genetic differentiation between Carex lasiocarpa and C. pellita (Cyperaceae) in North America. American Journal of Botany 81: 224–231.CrossRefGoogle Scholar
  30. McCourt, R. M., C. F. Delwiche & K. G. Karol, 2004. Charophyte algae and land plant origins. Trends in Ecology & Evolution 19: 661–666.CrossRefGoogle Scholar
  31. Nesbo, C. L., T. Fossheim, L. A. Vollestad & K. S. Jakobsen, 1999. Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization. Molecular Ecology 8: 1387–1404.PubMedCrossRefGoogle Scholar
  32. Odat, N., G. Jetschke & F. H. Hellwig, 2004. Genetic diversity of Ranunculus acris L. (Ranunculaceae) populations in relation to species diversity and habitat type in grassland communities. Molecular Ecology 13: 1251–1257.PubMedCrossRefGoogle Scholar
  33. Pankow, H., 1990. Ostsee-Algenflora. Gustav Fischer Verlag, Jena.Google Scholar
  34. Perkins, S. L., 2000. Species concepts and malaria parasites: detecting a cryptic species of Plasmodium. Proceedings of the Royal Society London B 267: 2345–2350.CrossRefGoogle Scholar
  35. Peterson, S. W., 2000. Bio-network news. Diversity 15: 31.Google Scholar
  36. Pierce, S. K., L. M. Rowlandfaux & S. M. Obrien, 1992. Different salinity tolerance mechanisms in Atlantic and Chesapeake Bay conspecific oysters – glycine betaine and amino acid pool variations. Marine Biology 113: 107–115.CrossRefGoogle Scholar
  37. Ray, S., M. Klenell, K. S. Choo, M. Pedersen & P. Snoeijs, 2003. Carbon acquisition mechanisms in Chara tomentosa. Aquatic Botany 76: 141–154.CrossRefGoogle Scholar
  38. Roldan-Ruiz, I., J. Denauw, E. Van Bockstaele, A. Depicker & M. De Loose, 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6: 125–134.CrossRefGoogle Scholar
  39. Roy, B. A., D. R. Vogler, T. D. Bruns & T. M. Szaro, 1998. Cryptic species in the Puccinia monoica complex. Mycologia 90: 847–854.CrossRefGoogle Scholar
  40. Says-Lesage, V., P. Roeckel- Drevet, A. Viguie, J. Tourvieille, P. Nicolas & D. T. Labrouhe, 2002. Molecular variability within Diaporthe/Phomopsis helianthi from France. Phytopathology 92: 308–313.CrossRefPubMedGoogle Scholar
  41. Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin: a software for population genetics data analysis. Version 2000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva.Google Scholar
  42. Schneider, S., C. Ziegler & A. Melzer, 2006. Growth towards light as adaptation to high light conditions in Chara branches. New Phytologist 172: 83–91.PubMedCrossRefGoogle Scholar
  43. Schubert, H. & I. Blindow, 2003. Charophytes of the Baltic Sea. Gantner Verlag, Rugell.Google Scholar
  44. Schwarz, G., M. Herz, X. Q. Huang, G. Wenzel, W. Michalek, A. Jahoor & V. Mohler, 2000. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat. Theoretical and Applied Genetics 100: 545–551.CrossRefGoogle Scholar
  45. Shaw, A. J., 2001. Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography 28: 253–261.CrossRefGoogle Scholar
  46. Shepherd, V. A., M. J. Beilby & T. Shimmen, 2002. Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. European Biophysics Journal 31: 341–355.PubMedCrossRefGoogle Scholar
  47. Taberlet, P., L. Fumagalli, A.-G. Wust-Saucy & J.-F. Cosson, 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7: 453–464.PubMedCrossRefGoogle Scholar
  48. Van de Peer, Y. & R. De Wachter, 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences 10: 569–570.PubMedGoogle Scholar
  49. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414.PubMedCrossRefGoogle Scholar
  50. Winter, U. & G. O. Kirst, 1991. Partial turgor pressure regulation in Chara canescens and its implications for a generalized hypothesis of salinity response in Charophytes. Botanica Acta 104: 37–46.Google Scholar
  51. Winter, U., I. Soulie-Marsche & G. O. Kirst, 1996. Effects of salinity on turgor pressure and fertility in Tolypella (Characeae). Plant Cell and Environment 19: 869–879.CrossRefGoogle Scholar
  52. Wood, R. D. & K. Imahori, 1965. Monograph of the Characeae. J. Cramer, Weinheim.Google Scholar
  53. Yatabe, Y., S. Masuyama, D. Darnaedi & N. Murami, 2001. Molecular systematics of the Asplenium nidus complex from Mt. Halimum National Park, Indonesia: evidence of reproductive isolation among three sympatric rbcL sequence types. American Journal of Botany 88: 1517–1522.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Michael G. Boegle
    • 1
    Email author
  • Susanne Schneider
    • 1
  • Beate Mannschreck
    • 1
  • Arnulf Melzer
    • 1
  1. 1.Limnologische Station der Technischen Universität MünchenIffeldorfGermany

Personalised recommendations