, Volume 586, Issue 1, pp 107–116 | Cite as

Pseudotetraëdriella kamillae: taxonomy and ecology of a new member of the algal class Eustigmatophyceae (Stramenopiles)

Primary Research Paper


A new family Loboceae E. Hegewald, a new genus Pseudotetraëdriella E. Hegewald, and a new species Pseudotetraëdriella kamillae E. Hegewald et J. Padisák are described. The species differs markedly from the described species with tetralobular/quadrangular shape like Tetraëdron (Chlorophyta) or Tetraëdriella (Xanthophyceae); differences to other morphologically similar species (Tetraëdron minimum f. brachiata Printz, T. minimum f. tetralobulatum Reinsch, T. minutissimum Korsh., T. mediocris Hindák, T. quadrilobatum G. M. Smith, T. regulare Kützing, Tetraëdriella jovetii (Bourr.) Bourr. (=Pseudostaurastrum jovetii Bourr., Polyedrium minimum f. tetralobula Reinsch) are discussed. 18S rDNA sequence analyses demonstrated its close relationship with a morphologically different, aerophytic species, Monodopsis subterranea, within the class Eustigmatophyceae (Heterokontophyta). Pseudotetraëdriella kamillae is typically occurring in the cold season (autumn-winter-spring), commonly in small amounts. Quantitative data from the stratifying, oligotrophic Lake Stechlin, N. Germany show that the population growths in the early spring isothermal period with an estimated doubling time of 46 days. Being a non-motile species, its abundance falls below detection level during the stratification period. In the period 1995–2002 with weekly-biweekly sampling its maximum abundance was recorded as 2.24 μg L-1, corresponding to 0.41% of total biomass.


Eustigmatophyceae Loboceae Pseudotetraëdriella Strains Taxonomy 18S rDNA Morphology New taxon 



We thank István Grigorszky for the Latin translation of the diagnosis. T.F. acknowledges the skillful technical assistance of Birgit Olberg, Ruth Pilot and Kristin Sauer in DNA sequencing. The authors are grateful to Dominik Hepperle for his various support and discussions. This work was supported by a grant extended by the German Ministry of Education and Research (BMBF) to T.F., contract 01LC0026, project BIOLOG “AlgaTerra AT4”. Samples were taken and limnological background data were recorded by the staff of the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Stratified Lakes, Neuglobsow, Germany. We thank Pirkko Hegewald for her help in plankton sampling and for culturing of strains.


  1. Bourrelly, P., 1968. Les Algues d’eau douce. Initiation à la Systématique. Tome II: Les Algues jaunes et brunes Chrysophycées, Phéophycées, Xanthophycées et Diatomées. Paris, 438 pp.Google Scholar
  2. Bourrelly, P., 1951. Xanthophycées rares ou Nouvelles. Bulletin du Muséum d’Histoire Naturelle, Paris, 2e série, 23(6): 666–672.Google Scholar
  3. Buchheim, M. A., J. A. Buchheim, T. Carlson, A. Braband, D. Hepperle, L. Krienitz, M. Wolf & E. Hegewald, 2005. Phylogeny of the Hydrodictyaceae (Chlorophyceae, Sphaeropleales): inferences from rDNA Data. Journal of Phycology 41: 1039–1054.CrossRefGoogle Scholar
  4. Casper, S. J. (ed.), 1985a. Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publ., Dordrecht, Boston, Lancaster.Google Scholar
  5. Casper, S. J., 1985b. The Phytoplankton. In Casper, S. J. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publ., Dordrecht, Boston, Lancaster: 157–195.Google Scholar
  6. Coleman, A. W., A. Suarez & L. J. Goff, 1994. Molecular delineation of species and syngens in Volvocacean green algae (Chlorphyta) Journal of Phycology 30: 80–90.CrossRefGoogle Scholar
  7. Ettl, H., 1978. Xanthophyceae, 1. Teil In Ettl, H., J., H. Gerloff & H. Heynig: Süßwasserflora von Mitteleuropa. Bd. 3. Fischer Verlag, Stuttgart, New York, 530 pp.Google Scholar
  8. Friedl, T. & C. J. O’Kelly, 2002. Phylogenetic relationships of green algae assigned to the genus Planophila (Chlorophyta): evidence from 18S rDNA sequence data and ultrastructure. European Journal of Phycology 3: 373–384.CrossRefGoogle Scholar
  9. Gervais, F., J. Padisák & R. Koschel, 1997. Do light quality and low phosphorus concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? Journal of Plankton Research 19: 771–781.CrossRefGoogle Scholar
  10. Hasegawa, M., H. Kishino & T. Yano, 1985. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Ecology 22: 176–174.Google Scholar
  11. Hegewald, E., L. Krienitz & E. Schnepf, 1994. Studies on Scenedesmus costato-granulatus Skuja. Nova Hedwigia 59: 97–127.Google Scholar
  12. Hegewald, E., P. F. M. Coesel & P. Hegewald, 2001. A phytoplankton collection from Bali, with the description of a new Desmodesmus species (Chlorophyta, Scenedesmaceae). Algological Studies 105: 51–78.Google Scholar
  13. Hindák, F., 1980. Studies on the chlorococcal algae (Chlorophyceae). II. Biologiclé Práce 26/6: 1–195.Google Scholar
  14. Komárek, J. & B. Fott, 1983. Chlorophyceae (Grünalgen), Ordnung Chlorococcales. - Das Phytoplankton des Süßwassers E. Schweizerbart’sche Verlagsbuchhandlung Stuttgart 7: 1–1044.Google Scholar
  15. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüßmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode & K.-H. Schleifer., 2004. ARB: a software environment for sequence data. Nucleic Acids Research 32: 1363–1371.PubMedCrossRefGoogle Scholar
  16. Padisák, J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary)—a dynamic approach to ecological memory, its possible role and mechanisms. Journal of Ecology 80: 217–230.CrossRefGoogle Scholar
  17. Padisák, J., F. A. R. Barbosa, R. Koschel & L. Krienitz, 2003b. Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 175–199.Google Scholar
  18. Padisák, J., L. Krienitz, R. Koschel & J. Nedoma, 1997. Deep layer picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. European Journal of Phycology 32: 403–416.CrossRefGoogle Scholar
  19. Padisák, J., L. Krienitz, W. Scheffler, R. Koschel, J. Kristiansen & I. Grigorszky, 1998. Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995. Hydrobiologia 369/370: 179–197.CrossRefGoogle Scholar
  20. Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003a. Interannual changes (1994–2000) of phytoplankton of Lake Stechlin. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 101–133.Google Scholar
  21. Padisák, J., W. Scheffler, R. Koschel & L. Krienitz, 2004. Seasonal patterns and interannual variability of phytoplankton in Lake Stechlin. Annual Report 2003 of the Leibnitz-Institut of Freshwater Ecology and Inland Fisheries, Berlin, ISSN 1432-508X: 105–116.Google Scholar
  22. Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003c. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie, Special Issues, Advances in Limnology. 58: 135–155.Google Scholar
  23. Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.PubMedCrossRefGoogle Scholar
  24. Printz, H., 1914. Kristianiatraktens Protococcoideer. Skrifter udgivne af Videnskapsselskapet i Kristiania, Mathematisk-naturvidenskapelig Klasse 1913 6: IV + 123 pp., VII pls.Google Scholar
  25. Reinsch, P. F., 1888. Familiae Polyedriearum Monographia accedunt species 15 et genera 2 nova. Notarisia 3: 493-516.Google Scholar
  26. Scheffler, W. & J. Padisák, 1997. Cyclotella tripartita Håkansson (Bacillariophyceae), a dominant diatom species in the oligotrophic Stechlinsee (Germany). Nova Hedwigia 65: 221–232.Google Scholar
  27. Scheffler, W. & J. Padisák, 2000. Stephanocostis chantaicus (Bacillariophyceae): morphology and population dynamics of a rare centric diatom growing in winter under ice in the oligotrophic Lake Stechlin, Germany. Algological Studies 133: 49–69.Google Scholar
  28. Scheffler, W., A. Nicklish & D. Hepperle, 2003. Dimorphism in Cyclotella pseudocomensis (Heterokontophyta, Bacillariophyceae) as revealed by morphological, ecological and molecular methods. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 157–173.Google Scholar
  29. Schnepf, E., A. Niemann & C. Wilhelm, 1996. Pseudostaurastrum limneticum, a eustimatophycean alga with astigmatic zoospores: morphogenesis, fine structure, pigment composition and taxonomy. Archiv für Protistenkunde 146: 237–249.Google Scholar
  30. Skuja, H., 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsaliensis 9(3): 1-399.Google Scholar
  31. Smith, G. M., 1922. The phytoplankton of the Muskoka region, Ontario, Canada. Transactions of the Wisconsin Academy of Science, Arts and Letters 20: 323–364.Google Scholar
  32. Swofford, D. L., 2001. PAUP*. Phylogenetic Analysis Using Parsimony. *and Other Methods. Version 4.0b10. Sinauer, Sunderland MA.Google Scholar
  33. Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology Evolution 10: 512–526.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Eberhard Hegewald
    • 1
  • Judit Padisák
    • 2
    • 3
  • Thomas Friedl
    • 4
  1. 1.Institute of Chemistry and Dynamics of the Geosphere III (Phytosphere)Research Centre JülichJülichGermany
  2. 2.Department of LimnologyUniversity of PannoniaVeszpremHungary
  3. 3.Department of Stratified LakesLeibniz-Institute of Freshwater Ecology and Inland FisheriesStechlin-NeuglobsowGermany
  4. 4.Department of Experimental Phycology and Culture Collection of AlgaeAlbrecht-von-Haller InstituteGoettingenGermany

Personalised recommendations