Hydrobiologia

, Volume 581, Issue 1, pp 209–215

Different competitive outcomes among four species of cladocerans under different alga combinations of colonial Microcystis spp. and green alga Scenedesmus obliquus

Eutrophication in Lakes

Abstract

Cyanobacteria blooms (especially Microcystis spp.) are thought to alter dominance of large-sized daphnids into small-sized metazoan zooplankton. However, several field investigations show different phenomena. Laboratory experiments were conducted based on the hypothesis that different Microcystis spp. concentrations would influence competitive outcomes using two algal combinations of different concentrations and four species of cladocerans. In the algal combination of 50 mg l−1 colonial Microcystis spp. + 1 mg l−1Scenedesmus obliquus (fresh weight), Daphnia carinata was absent during the experiment in competition with other cladocerans. Decreasing colonial Microcystis spp. concentration (10 mg l−1) resulted in a shift from dominance by small-sized cladocerans to dominance by D. carinata. No significant effects of different concentrations of colonial Microcystis spp. on competitive outcomes were shown among three small-sized cladocerans. These results support the idea that cyanobacteria concentration affects the dominance status of large-bodied daphnid.

Keywords

cladoceran Daphnia competition Microcystis spp. 

References

  1. Allan, J. D., 1977. An analysis of seasonal dynamics of a mixed population of Daphnia and associated cladoceran community. Freshwater Biology 7: 505–512.CrossRefGoogle Scholar
  2. Carmichael, W. W., M. J. Yu, Z. R. He, J. W. He & J. L. Yu, 1988. Occurrence of the toxic cyanobacterium (blue-green alga) Microcystis aeruginosa in central China. Archiv für Hydrobiologie 114: 21–30.Google Scholar
  3. Champ, P. & R. Pourriot, 1977. The food of freshwater planktonic cladocera (Crustacea). Annee Biology 16: 317–342.Google Scholar
  4. Chaneton, E. J. & M. B. Bonsall, 2000. Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88: 380–394.CrossRefGoogle Scholar
  5. Chen, F. Z. & P. Xie, 2003. The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese lake. Journal of Freshwater Ecology 18: 97v–104v.Google Scholar
  6. Chen, F. Z. & P. Xie, 2004. The toxicities of single-celled Microcystis aeruginosa PCC7820 and liberated M. aeruginsa to Daphnia carinata in the absence and present of the green alga Scenedesmus obliquus. Journal of Freshwater Ecology 19: 539–545.Google Scholar
  7. DeMott, W. R., 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshwater Biology 42: 263–274.CrossRefGoogle Scholar
  8. Ferrão-Filho, A. S., S. M. F. O. Azevedo & W. R. DeMott, 2000. Effects of toxic and non-toxic cyanbacteria on the life history of tropical and temperature cladocerans. Freshwater Biology 45: 1–19.CrossRefGoogle Scholar
  9. Fulton, III R. S. & H. W. Paerl, 1988. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations. Oecologia 76: 383–389.Google Scholar
  10. George, D. G. & R. W. Edwards, 1974. Population dynamics and production of Daphnia hyalina in a eutrophic reservoir. Freshwater Biology 4: 445–465.CrossRefGoogle Scholar
  11. Goarant, E., G. Prensier & N. Lair, 1994. Specific immunological probes for the identification and tracing of prey in crustacean gut contents. The example of cyanobacteria. Archiv für Hydrobiologie 131: 243–252.Google Scholar
  12. Goulden, C. E., L. L. Henry & A. J. Tessier, 1982. Body size, energy reserves, and competitive ability in three species of cladocera. Ecology 63: 1780–1789.CrossRefGoogle Scholar
  13. Gulati, R. D., M. Bronkhorst & E. Van Donk, 2001. Feeding in Daphnia galeata on Oscillatoria limnetica and on detritus derived from it. Journal of Plankton Research 23: 705–718.CrossRefGoogle Scholar
  14. Hanazato, T. & M. Yasuno, 1985. Population dynamics and production of cladoceran zooplankton in the highly eutrophic Lake Kasumigaura. Hydrobiologia 124: 13–22.CrossRefGoogle Scholar
  15. Hanazato, T. & M. Yasuno, 1987. Experimental studies on competition between Bosmina longirotris and Bosmina fatalis. Hydrobiologia 154: 189–199.CrossRefGoogle Scholar
  16. Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research 21: 467–475.CrossRefGoogle Scholar
  17. He, J. W., Z. R. He & Q. L. Guo, 1997. The toxicity of Microcystis aeruginosa to fishes and Daphnia. Journal of Lake Sciences 9: 49–56 (in Chinese).Google Scholar
  18. Hessen, D. O. & E. Van Donk, 1993. Morphological changes in Scenedesmus induced by substances release from Daphnia. Archiv für Hydrobiologie, 127: 129–140.Google Scholar
  19. Infante, A. & W. Riehl, 1984. The effect of cyanophyta upon zooplankton in a eutrophic tropical lake (Lake Valencia, Venezuela). Hydrobiologia 113: 293–298.CrossRefGoogle Scholar
  20. Jarvis, A. C., R. C. Hart & S. Combrink, 1987. Zooplankton feeding on size fractionated Microcystis colonies and Chlorella in a hypertrophic lake (Hartbeespoort Dam, South Africa): Implications to resource utilization and zooplankton succession. Journal of Plankton Research 9: 1231–1249.CrossRefGoogle Scholar
  21. Jungmann, D., 1992. Toxic compounds isolated from Microcystis PCC7806 that are more active against Daphnia than two microcystins. Limnology and Oceanography 37: 1777–1783.Google Scholar
  22. Kim, H. W., G. J. Joo, K. H. Chang & S. J. Hwang, 2001. Zooplankton community dynamics during the summer Mycrocystis bloom in the lower part of the Nakdong River, South Korea. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 27: 1044–1049.Google Scholar
  23. Li, S. H., H. Zhu, J. Z. Xia, K. E. Lin, K. S. Liu, Z. Y. Le & Y. X. Chen, 1959. Experiment on mass culture of single-celled green alga. Acta Hydrobiological Sinica 4: 462–472 (in Chinese).Google Scholar
  24. Martínez, G. & R. Medel, 2002. Indirect interactions in a microcosm-assembled cladoceran community: implications for apparent competition. Oikos 97: 111–115.CrossRefGoogle Scholar
  25. Matveev, V., L. Matveeva & G. Jones, 1994. Study of the ability of Daphnia carinata King to control phytoplankton and resist cyanobacterial toxicity: implications of biomanipulation in Australia. Australia Journal of Marine and Freshwater Research 45: 889–904.CrossRefGoogle Scholar
  26. McNaught, D. C., W. Chen & H. J. Cai, 1997. Grazing on a Microcystis bloom by cladocerans and copepods in Tai Lake. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 26: 550–552.Google Scholar
  27. Mesfin, M., C. Tudorancea & R. M. Baxter, 1988. Some limnological observations on two Ethiopian hydroelectric reservoirs: Koka (Shewa administrative district) and Finchaa. Hydrobiologia 157: 47–55.CrossRefGoogle Scholar
  28. Nandini, S., S. S. S. Sarma & P. Ramirez-Garcia, 2000. Life table demography and population growth of Daphnia laevisi (Cladocera, Anomopoda) under different densities of Chlorella vulgaris and Microcystis aeruginosa. Crustaceana 73: 1273–1286.CrossRefGoogle Scholar
  29. Sartonov, A., 1995. Effects of Microcysits aeruginosa on interference competition between Daphnia pulex and Keratella cochlearis. Hydrobiologia 307: 117–126.CrossRefGoogle Scholar
  30. Stangenberg, M., 1968. Toxic effects of Microcystis aeruginosa Kg. Extracts on Daphnia longispina O. F. Müller and Eucypris virens Jurine. Hydrobiologia 32: 81–87.Google Scholar
  31. Taira, M., 1989. Species composition and feeding habits of crustacean plankters in the pools of high moor. Japanese Journal of Limnology 50: 333–339.Google Scholar
  32. Tang, H. J., 2002. Ecological studies on phytoplankton of the shallow, eutrophic Lake Donghu. Dotoral dissertation thesis, Institute of Hydrobiology, Chinese Academy of Sciences (in Chinese).Google Scholar
  33. Tessier, A. J. & C. E. Goulden, 1987. Cladoceran juvenile growth. Limnology and Oceanography 32: 680–686.CrossRefGoogle Scholar
  34. Watanabe, M. M., K. Kaya & N. Takamura, 1992. Fate of the toxic cyclic heptapeptides, the microcystins, from blooms of Microcystis (Cyanobacteria) in a hypertrophic lake. Journal of Phycology 28: 761–767.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of HydrobiologyChinese Academy of SciencesWuhanP.R. China
  2. 2.Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingP.R. China

Personalised recommendations