Hydrobiologia

, Volume 586, Issue 1, pp 27–41

Diatom assemblages in sediments of Lake Juusa, Southern Estonia with an assessment of their habitat

Primary Research Paper

Abstract

Diatom analysis of surface sediments and two sediment cores from different sedimentation areas of a small closed lake was undertaken with the aim of acquiring knowledge on the dependence of the distribution of diatom assemblages on lake bathymetry. Lake Juusa was selected for the study because we have for this lake a large data set about the lithological composition of sediments and macrofossil and cladoceran records for the Holocene. A high carbonate content (20–60%) in the sediment sequence indicates high carbonacity and relatively stable pH values during the Holocene. On the basis of comprehensive analysis, abrupt water-level fluctuations and changes in the trophic status were established. Results of this study showed that the fluctuations of the water-level were the leading factor determining the habitats of diatom assemblages in the lake. In the surface sediment samples planktonic species such as Cyclotella spp., Stephanodiscus spp. and Aulacoseira spp. had a depth optimum at 3–4 m and the most abundant periphytic taxa were distributed mostly at depths shallower than 3.5 m. The same regularity was established in sediment cores where a good correlation between planktonic species and lake water depth was found in sediments accumulated at water depths >4 m. Lake Juusa appears to be a proper site for detailed environmental reconstructions over the Holocene, and the results will give us a good opportunity to analyse the history of water-level fluctuations in other small Estonian lakes.

Keywords

Diatoms Lake sediments Lake-level fluctuations Palaeolimnology Estonian lakes 

Supplementary material

10750_2006_0474_ESM.doc (25 kb)
ESM (DOC 25 kb)

References

  1. Allaire, N., 1997. Relation entre les assemblages de diatomées et les variables environnementales de 70 lacs du Labrador et resultants préliminaires d’une étude paléolimnologique du lac Hope Simpson. M.A. thesis, Université Laval, Québec, QC.Google Scholar
  2. Anderson, N. J., 1990a. Spatial pattern of recent sediment and diatom accumulation in a small, monomictic eutrophic lake. Journal of Paleolimnology 3: 143–160.CrossRefGoogle Scholar
  3. Anderson, N. J., 1990b. The biostratigraphy and taxonomy of small Stephanodiscus and Cyclostephanos species (Bacillariophyceae) in a eutrophic lake, and their ecological implications. British Phycological Journal 25: 217–235.Google Scholar
  4. Anderson, N. J., 1997. Reconstructing historical phosphorous concentrations in rural lakes using diatom models. In Tunney, H., O. T. Carton, P. C. Brookes & A. E. Johnston (eds), Phosphorus Loss from Soil to Water. CAB International, Wallingford, UK, 95–118.Google Scholar
  5. Anderson, N. J., B. Rippey & E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining predisturbance nutrient conditions. Hydrobiologia 253: 357–366.CrossRefGoogle Scholar
  6. Barker, P., 1992. Differential diatom dissolution in Late Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. Journal of Paleolimnology 7: 235–251.CrossRefGoogle Scholar
  7. Barker, P. A., N. Roberts, H. F. Lamb, S. van der Kaars & A. Benkaddour, 1994. Interpretation of Holocene lake-level changes from diatom assemblages in Lake Sidi Ali, Middle Atlas, Morocco. Journal of Paleolimnology 12: 223–234.CrossRefGoogle Scholar
  8. Battarbee, R. W., 1986. Diatom analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Toronto, 527–570.Google Scholar
  9. Battarbee, R. W., D. F. Charles, S. S. Dixit & I. Renberg, 1999. Diatoms as indicators of surface water acidity. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, 85–127.Google Scholar
  10. Battarbee, R.W., V. J. Jones, R. J. Flower, N. G. Cameron & H. Bennion, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmnental Change Using Lake Sediments. Volume 3: Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, 155–202.Google Scholar
  11. Bergner, A. G. N. & M. H. Trauth, 2004. Comparison of the hydrological and hydrochemical evolution of Lake Naivasha (Kenya) during three highstands between 175 and 60 kyr BP. Paleogeography, Paleoclimatology, Paleoecology 215: 17–36.CrossRefGoogle Scholar
  12. Birks, H. J. B., 1998. Numerical tools in paleolimnology—progress, potentialities, and problems. Journal of Paleolimnology 20: 307–332.CrossRefGoogle Scholar
  13. Birks, H. J. B. & H. H. Birks, 1980. Quaternary Palaeoecology. Edward Arnold, London.Google Scholar
  14. Bradshaw, E. G., P. Rasmussen, H. Nielsen & N. J. Anderson, 2005. Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: trends in lake primary production as reflected by algal and macrophyte remains. The Holocene 20(8): 1130–1142.CrossRefGoogle Scholar
  15. Brugam, R. B., K. McKeever & L. Kolesa, 1998. A diatom-inferred water depth reconstruction for an Upper Peninsula, Michigan, lake. Journal of Paleolimnology 20: 267–276.CrossRefGoogle Scholar
  16. Chalié, F. & F. Gasse, 2002. Late Glacial-Holocene diatom record of water chemistry and lake level change from the tropical East African Rift Lake Abiyata (Ethiopia). Paleogeography, Paleoclimatology, Paleoecology 187: 259–283.CrossRefGoogle Scholar
  17. Dean, W. E., J. P. Bradbury, R. Y. Andersen & C. W. Barnosky, 1984. The variability of Holocene climate change: evidence from varved sediments. Science 226: 1191–1194.CrossRefPubMedGoogle Scholar
  18. Enell, M. & P. Larsson, 1985. Vatten-och sedimentkemiska analysmetoder. Institute of Limnology, University of Lund.Google Scholar
  19. Flower, R. J., 1993. Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269/270: 473–484.CrossRefGoogle Scholar
  20. Gasse, F., S. Juggins & L. B. Khelifa, 1995. Diatom-based transfer functions for inferring hydrochemical characteristics of African palaeolakes. Palaeogeography, Palaeoclimatology, Palaeoecology 117: 31–54.CrossRefGoogle Scholar
  21. Griffiths, H. I., J. M. Reed, M. J. Leng, S. Ryan & S. Petkovski, 2002. The conservation status and recent palaeoecology of Balkan Lake Dojran. Biological Conservation 104: 35–49.CrossRefGoogle Scholar
  22. Grimm, E. C., 1990. TILIA and TILIA GRAPH. PC spreadsheet and graphics software for pollen data. INQUA, Working Group on Data-Handling Methods. Newsletter 4: 5–7.Google Scholar
  23. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 27: 417–434.CrossRefGoogle Scholar
  24. Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of long-term water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Canadian Journal of Fisheries and Aquatic Sciences 53: 1–17.CrossRefGoogle Scholar
  25. Hall, R. I. & J. P. Smol, 1999. Diatoms as indicators of lake eutrophication. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, 128–168.Google Scholar
  26. Hodgson, D. A., W. Vyverman & P. Tyler, 1997. Diatoms of meromictic lakes adjacent to the Gordon River, and of the Gordon River estuary in south-west Tasmania. Bibliotheca Diatomologica, Band 35, J. Cramer, Berlin.Google Scholar
  27. Hofman, A., D. Roussy & M. Filella, 2002. Dissolved silica budget in the North basin of Lake Lugano. Chemical Geology 182: 35–55.CrossRefGoogle Scholar
  28. Håkansson, H. & J. Regnell, 1993. Diatom succession related to land use during the last 6000 years: a study of a small eutrophic lake in southern Sweden. Journal of Paleolimnology 8: 49–69.CrossRefGoogle Scholar
  29. Håkanson, L., 1977. The influence of wind, fetch and water depth on the distribution of sediments in Lake Vänern, Sweden. Canadian Journal of Earth Science 14: 397–412.Google Scholar
  30. Kilman, S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnology and Oceanography 41: 1052–1062.CrossRefGoogle Scholar
  31. Koff, T., 2004. Macrofossils in the sediments of L. Juusa (Southern Estonia). In Kaare, T. & J.-M. Punning (eds), Estonia. Geographical Studies 9: 30–40.Google Scholar
  32. Koff, T., J.-M. Punning, K. Sarmaja-Korjonen & T. Martma, 2005. Ecosystem response to early and Late Holocene lake-level changes in Lake Juusa, southern Estonia. Polish Journal of Ecology 53(4): 553–570.Google Scholar
  33. Krammer, K. & H. Lange-Bertalot, 1988–1991. Bacillariophyceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Band 2(2–4). Gustav Fischer Verlag, Stuttgart/Jena.Google Scholar
  34. Krammer, K. & H. Lange-Bertalot, 1999–2004. Bacillariophyceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Band 2(1–4). Spektrum Akademischer Verlag, Heidelberg/Berlin.Google Scholar
  35. Lewin, J. C., 1961. The dissolution of silica from diatom walls. Geochimica et Cosmochimica Acta 21: 182–198.CrossRefGoogle Scholar
  36. Lotter, A. F. & C. Bigler, 2000. Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Science 62: 125–141.CrossRefGoogle Scholar
  37. Meriläinen, J., 1973. The dissolution of diatom frustules and its palaeoecological interpretation. Report of the Department of Quaternary Geology, University of Lund 3, 91–95.Google Scholar
  38. Moos, M. T., K. R. Laird & B. F. Cumming, 2005. Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): implications for paleoclimatic studies. Journal of Paleolimnology 34: 217–227.CrossRefGoogle Scholar
  39. Peterson, C. G. & R. J. Stevenson, 1992. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73(4): 1445–1461.CrossRefGoogle Scholar
  40. Punning, J.-M., A. Raukas, L. Serebryannyi & V. Stelle, 1968. Paleogeographic pecularities and absolute age of the Luga stadial of the Valdai glaciation on the Russian Plain. Proceedings of the Academy of Sciences of USSR. Geology 178: 916–918 (in Russian).Google Scholar
  41. Punning, J.-M. & K. Tõugu, 2000. C/N ratio and fossil pigments in sediments of some Estonian lakes: an evidence of human impact and Holocene environmental change. Environmental Monitoring and Assessment 64: 549–567.CrossRefGoogle Scholar
  42. Punning, J.-M., L. Puusepp & T. Koff, 2004. Spatial variability of diatoms, subfossil macrophytes and OC/N values in surface sediments of Lake Väike Juusa (southern Estonia). Proceedings of the Estonian Academy of Sciences. Biology. Ecology 53(3): 147–160.Google Scholar
  43. Punning, J.-M., T. Koff, E. Kadastik & A. Mikomägi, 2005a. Holocene lake level fluctuations recorded in the sediment composition of Lake Juusa, southeastern Estonia. Journal of Paleolimnology 34(2): 377–390.CrossRefGoogle Scholar
  44. Punning, J.-M., J. Terasmaa & E. Kadastik, 2005b. Grain size of the bottom sediments of Lake Väike Juusa (southern Estonia) as the indicator of water-level fluctuations. Proceedings of the Estonian Academy of Sciences. Geology 54: 40–51.Google Scholar
  45. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge Studies in Ecology, Cambridge University Press, Cambridge.Google Scholar
  46. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms. Cambridge University Press, Cambridge.Google Scholar
  47. Saarse, L. & S. P. Harrison, 1992. Holocene lake-level changes in the eastern Baltic region. In Kaare, T., H. Mardiste, L. Merikalju & J.-M. Punning (eds), Estonia. Man and Nature. Tallinn, 6–20.Google Scholar
  48. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. International Association of Theoretical and Applied Limnology 23: 837–844.Google Scholar
  49. Stabell, B., 1985. The development and succession of taxa within the diatom genus Fragilaria Lyngbye as a response to basin isolation from the sea. Boreas 14: 273–268.CrossRefGoogle Scholar
  50. Stoermer, E. F. & J. P. Smol, 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge.Google Scholar
  51. Straub, F., 1993. Diatoms and their preservation in sediments of Lake Neuchâtel (Switzerland) as evidence of past hydrological changes. Hydrobiologia 269/270: 167–178.CrossRefGoogle Scholar
  52. Stuiver, M., P. J. Reimer & T. F. Braziunas, 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40: 1127–1151.Google Scholar
  53. Tarras-Wahlberg, H., M. Everard & D. M. Harper, 2002. Geochemical and physical characteristics of river and lake sediments at Naivasha, Kenya. Hydrobiologia 488: 27–41.CrossRefGoogle Scholar
  54. Wolin, J. A., 1996. Late Holocene lake-level and lake development signals in Lower Herring Lake, Michigan. Journal of Paleolimnology 15(1): 1945.CrossRefGoogle Scholar
  55. Wolin, J. A. & H. C. Duthie, 1999. Diatoms as indicators of water level change in freshwater lakes. In Stoermer, E. F. & J. P Smol (eds), The Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge, 183–202.Google Scholar
  56. Yang, J.-R. & H. C. Duthie, 1995. Regression and weighted averaging models relating surficial sedimentary diatom assemblages to water depth in Lake Ontario. Journal of Great Lakes Research 21(1): 84–94.CrossRefGoogle Scholar
  57. Yang, X., C. Kamenik, R. Schmidt & S. Wang, 2003. Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. Journal of Paleolimnology 30: 1–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute of EcologyTallinn UniversityTallinnEstonia

Personalised recommendations