, Volume 583, Issue 1, pp 57–68 | Cite as

Density-dependent individual growth of marble trout (Salmo marmoratus) in the Soca and Idrijca river basins, Slovenia

  • Simone Vincenzi
  • Alain J. Crivellì
  • Dusan Jesensek
  • Jean-Francois Rubin
  • Giulio A. De Leo
Primary Research Paper


Although the main features of salmonid life cycles are currently well known, marble trout (Salmo marmoratus) populations have been scarcely studied due to the present limited geographical distribution of the species. In this work we tested the hypothesis of density-dependent individual growth of marble trout with data gathered from multi-year on-going monitoring started in 1996 in three streams (Zakojska, Gorska and Gatsnik) in the Soca and Idrijca river basins (Slovenia). As observed for other salmonid species, marble trout exhibits high plasticity in body size and growth in response to environmental conditions. Age-specific mean lengths are significantly different among the three streams. Despite this variability, the statistical analyses outlined some clear patterns. Mean lengths of marble trout cohorts aged ≥1+ are correlated with total population density in the first year of life of the cohorts; the age-specific relationship between mean length and total density is well explained by negative power curves. Length of marble trout at age 1+ is significantly correlated with length at subsequent years up to age 4+. ANCOVAs performed on the stream-specific datasets showed a significant effect of total density of marble trout on annual age-specific individual growth rates. Von Bertalanffy’s body growth models were calibrated on length–age data of Zakojska and Gorska marble trout. Our analysis shows the existence of density-dependent effects on growth of marble trout that might be crucial in regulating population dynamics.


Marble trout Salmo marmoratus Individual growth Density-dependent growth 



We thank Fondation Tour du Valat and the Angling Association of Tolmin for funding this study. All the people who have participated each year to the fieldwork are warmly thanked. We thank Patrick Clevestam and Magnus Gehlin for helping us to get the Carlin marks, and S. Sumer for undertaking IBGN and benthos biomass investigations. We also thank Marino Gatto for helpful review of the manuscript. The author also thanks three anonymous referees for their valuable suggestions to improve a first draft of the MS. The authors thank the Italian Minister of Research for having partially supported the present work under an internationalization project.


  1. AFNOR (Association Francaise de Normalisation), 1992. Essais des eaux. Determination de ĺindice biologique global normalisé (IBGN). AFNOR, NF T90-350, Paris.Google Scholar
  2. Berg, S. & J. Jørgensen, 1991. Stocking experiment with 0+ and 1+ trout parr, Salmo trutta L., of wild and hatchery origin: 1. Post-stocking mortality and smolt yield. Journal of Fish Biology 39: 151–169.CrossRefGoogle Scholar
  3. Berrebi, P., M. Povz, D. Jesensek & A. J. Crivelli, 2000. The genetic diversity of native, stocked and hybrid populations of Marble trout in the Soca River, Slovenia. Heredity 85: 277–287.PubMedCrossRefGoogle Scholar
  4. Beverton, R. J. H. & S. J. Holt, 1957. On the Dynamics of Exploited Fish Populations. Chapman and Hall, London.Google Scholar
  5. Crisp, D. T., 1993. Population densities of juvenile trout (Salmo trutta) in 5 upland streams and their effects upon growth, survival and dispersal. Journal of Applied Ecology 30: 759–771.CrossRefGoogle Scholar
  6. Crisp, D. T. & W. R. C. Beaumont, 1995. The trout (Salmo trutta) population of the Afon Cwm, a small tributary of the Afon Dyfi, mid-Wales. Journal of Fish Biology 46: 703–716.CrossRefGoogle Scholar
  7. Crivelli, A. J., G. Poizat, P. Berrebi, D. Jesensek & J. F. Rubin, 2000. Conservation biology applied to fish: The example of a project for rehabilitating the Marble trout in Slovenia. Cybium 24: 211–230.Google Scholar
  8. Dorofeyeva, Ye. A., T. Vukovich & D. Seratlich, 1992. Osteological features of the endemic Balkan Marbled trout, Salmo marmoratus Cuv. (Salmonidae). Journal of Ichthyology 31: 113–121.Google Scholar
  9. Edwards, R. W., J. W. Densem & P. A. Russell, 1979. An assessment of the importance of temperature as a factor controlling the growth rate of brown trout in streams. Journal of Animal Ecology 58: 501–507.Google Scholar
  10. Egglishaw, H. J. & P. E. Shackley, 1985. Factors governing the production of juvenile Atlantic salmon in Scottish streams. Journal of Fish Biology 27: 27–33.CrossRefGoogle Scholar
  11. Elliott , J. M., 1975a. The growth rate of brown trout (Salmo trutta L.) fed on maximum rations. Journal of Animal Ecology 44: 805–821.CrossRefGoogle Scholar
  12. Elliott, J. M., 1975b. The growth rate of brown trout (Salmo trutta L.) fed on reduced rations. Journal of Animal Ecology 44: 823–842.CrossRefGoogle Scholar
  13. Forneris, G., G. B. Del Mastro & S. Bellardi, 1990. Attuale distribuzione di Salmo marmoratus Cuvier, 1817 in Provincia di Torino. Rivista di Idrobiologia 29: 213–221.Google Scholar
  14. Froese, R. & D. Pauly, 2005. www.fishbase.org, version (07/2005).Google Scholar
  15. Fumagalli, L., A. Snoj, D. Jesensek, F. Balloux, T. Jug, O. Duron, F. Brossier, A. J. Crivelli & P. Berrebi, 2002. Extreme differentiation among the remnant populations of marble trout (Salmo marmoratus) in Slovenia. Molecular Ecology 11: 2711–2716.PubMedCrossRefGoogle Scholar
  16. Gardeur, J. N., M. Paspatis, A. Gélineau & T. Boujard, 2001. Biostatistical implications of individual variability in growth in rainbow trout and Atlantic salmon. Aquaculture 195: 51–59.CrossRefGoogle Scholar
  17. Giuffra, E., R. Guyomard & G. Forneris, 1996. Phylogenetic relationships and introgression patterns between incipient parapatric species of Italian brown trout (Salmo trutta L. complex. Molecular Ecology 5: 207–220.CrossRefGoogle Scholar
  18. Grant, J. W. A. & I. Imre, 2005. Patterns of density-dependent growth in juvenile stream-dwelling salmonids. Journal of Fish Biology 67: 100–110.CrossRefGoogle Scholar
  19. Grant, J. W. A. & D. L. Kramer, 1990. Territory size as a predictor of the upper limit to population density of juvenile salmonids in streams. Canadian Journal of Fisheries and Aquatic Sciences 47: 1724–1737.CrossRefGoogle Scholar
  20. Hamrin, S. F. & L. Persson, 1986. Asymmetrical competition between age classes as a factor causing population oscillations in an obligate planktivorous fish species. Oikos 47: 223–232.CrossRefGoogle Scholar
  21. Hartman, G. F. & J. C. Scrivener, 1990. Impacts of forestry practices on a coastal stream ecosystem, Carnation Creek, British Columbia. Canadian Bulletin of Fisheries and Aquatic Sciences 223: 1–148.Google Scholar
  22. Hutchings, J. A. & M. E. B. Jones, 1998. Life history variation and growth rate thresholds for maturity in Atlantic Salmon, Salmo Salar. Canadian Journal of Fisheries and Aquatic Sciences 55: 22–47.CrossRefGoogle Scholar
  23. Imre, I., J. W. A. Grant & E. R. Keeley, 2004. The effect of food abundance on territory size and population density of juvenile steelhead trout (Oncorhynchus mykiss). Oecologia 138: 371–378.PubMedCrossRefGoogle Scholar
  24. Imre, I., J. W. A. Grant & R. A. Cunjak, 2005. Density-dependent growth of young-of-the-year Atlanti salmon Salmo salar in Catamaran Brook, New Brunswick. Journal of Animal Ecology 74: 508–516.CrossRefGoogle Scholar
  25. Jenkins, T. M. Jr., S. Diehl, K. W. Kratz & S. D. Cooper, 1999. Effects of population density on individual growth of brown trout in streams. Ecology 80: 941–956.CrossRefGoogle Scholar
  26. Keddy P. A., 1989. Competition. Chapman and Hall.Google Scholar
  27. Klemetsen, A., P.-A. Amundsen, J. B. Dempson, B. Jonsson, N. Jonsson, M. F. O’Connell & E. Mortensen, 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Artic charr Salvelinus alpinus (L.): A review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.CrossRefGoogle Scholar
  28. Koops, M. A, J. A. Hutchings, & T. M. McIntyre, 2004. Testing hypotheses about fecundity, body size and maternal condition in fishes. Fish and Fisheries 5: 120–130.CrossRefGoogle Scholar
  29. Kottelat, M., 1997. European freshwater fishes. Biologia, Bratislava 52: 1–271.Google Scholar
  30. Kramer, D. L., R. W. Rangeley & L. J. Chapman, 1997. Habitat selection: Patterns of spatial distribution from behavioural decisions. In Godin J.-G. J. (ed.), Behavioural Ecology of Teleost Fishes. Oxford University Press, Oxford: 37–80.Google Scholar
  31. Levene, H., 1960. Robust tests for equality of variance. In Olkin I. (ed.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, Stanford, CA: 278–292.Google Scholar
  32. Lobón-Cerviá, J. & P. A. Rincón, 2004. Environmental determinants of recruitment and their influence on the population dynamics of stream-living brown trout Salmo trutta. Oikos 105: 641–646.CrossRefGoogle Scholar
  33. Lobón-Cerviá, J., C. Montanes & A. de Sostoa, 1986. Reproductive ecology and growth of a population of brown trout (Salmo trutta L.) in a aquifer-fed stream of Old Castile (Spain). Hydrobiologia 135: 81–94.CrossRefGoogle Scholar
  34. Lobón-Cerviá, J., C. Utrilla, P. Rincón & F. Amezcua, 1997. Environmentally induced spatio-temporal variations in the fecundity of brown trout Salmo trutta L.: trade-offs between egg size and number. Freshwater Biology 38: 277–288.CrossRefGoogle Scholar
  35. Lorenzen, K. & K. Endberg, 2002. Density-dependent growth as a key mechanism in the regulation of fish populations: Evidence from among-population comparison. Proceedings of the Royal Society of London B 269: 49–54.CrossRefGoogle Scholar
  36. Mann, R. H. K., C. A. Mills & D. T. Crisp, 1983. Geographical variation in the life history tactics of some species of freshwater fish. In Miller J. T. (ed.), Fish Reproduction. Academic Press, London: 171–186.Google Scholar
  37. Martyniuk, C. J., G. M. L. Perry, H. K. Mogahadam, M. M. Ferguson & R. G. Danzmann, 2003. The genetic architecture of correlations among growth related traits and male age at maturation in rainbow trout. Journal of Fish Biology 63: 746–764.CrossRefGoogle Scholar
  38. Mason, J. C., 1976. Response of underyearling coho salmon to supplemental feeding in a natural stream. Journal of Wildlife Management 40: 775–788.Google Scholar
  39. McFadden, J. T. & E. L. Cooper, 1962. An ecological comparison of six populations of brown trout (Salmo trutta). Transactions of the American Fisheries Society 91: 53–62.CrossRefGoogle Scholar
  40. Motulsky, H. & A. Christopoulos, 2004. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. Oxford University Press, Oxford.Google Scholar
  41. Newman, R. M., 1993. A conceptual model for examining density dependence in the growth of stream trout. Ecology of Freshwater Fish 2: 121–131.CrossRefGoogle Scholar
  42. Persson, L., G. Andersson, L. Johansson, S. Diehl & S. F. Hamrin, 1993. Density dependent interactions in lake ecosystems: Whole lake perturbations. Oikos 66: 193–208.CrossRefGoogle Scholar
  43. Pinheiro, J. & B. Douglas, 2000. Mixed-effect model in S and S-plus. Springer-Verlag, New York.Google Scholar
  44. Post, J. R., E. A. Parkinson & N. T. Johnston, 1999. Density-dependent processes in structured fish populations: Interaction strength in whole-lake experiments. Ecological Monographs 69: 155–175.CrossRefGoogle Scholar
  45. Povz, M., 1995. Status of freshwater fishes in the Adriatic catchment of Slovenia. Biological Conservation 72: 171–177.CrossRefGoogle Scholar
  46. R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria ISBN 3-900051-07-0 http://www.R-project.org.
  47. Rochet, M. J., 1998. Short-term effects of fishing on life history traits of fishes. ICES Journal of Marine Science 55: 371–391.CrossRefGoogle Scholar
  48. Rose, K. A., J. H. Cowan Jr., K. O. Winemiller, R. A. Myers & R. Hilborn, 2001. Compensatory density dependence in fish populations: Importance, controversy understanding and prognosis. Fish and Fisheries 2: 293–327.CrossRefGoogle Scholar
  49. Schoffmann, J., 1994. Zur gegenwätigen Situation des marmorierten Forelle (Salmo marmoratus Cuvier, 1817) in Albanien, ihrem südlichsten Verbreitungsraum. Osterreichs Fischerei 47: 132–136.Google Scholar
  50. Shapiro, S. S. & M. B. Wilk, 1965. An analysis of variance test for normality. Biometrika 52: 591–611.Google Scholar
  51. Sommani, E., 1961. Il Salmo marmoratus Cuv.: sua origine e distribuzione nell’Italia settentrionale. Bolletino di Pesca, Piscicoltura e Idrobiologia 15: 40–47.Google Scholar
  52. Su, G. S, L. E. Liljedahl & G. A. E. Gall, 1996. Genetic and environmental variation of body weight in rainbow trout (Oncorhynchus mykiss). Aquaculture 144: 71–80.CrossRefGoogle Scholar
  53. Tonn, W. M., I. J. Holopainen & C. A. Paszkowski, 1994. Density-dependent effects and the regulation of crucian carp populations in single-species ponds. Ecology 75: 824–834.CrossRefGoogle Scholar
  54. Townsend, C. R. & M. R. Perrow, 1989. Eutrophication may produce population cycles in roach, Rutilus rutilus (L.) by two contrasting mechanisms. Journal of Fish Biology 34: 161–164.CrossRefGoogle Scholar
  55. Utrilla, C. G. & J. Lobón-Cerviá, 1999. Life-history patterns in a southern population of Atlantic salmon. Journal of Fish Biology 55: 68–73.CrossRefGoogle Scholar
  56. Van Deventer, J. S. & W. S. Platts, 1989. Microcomputer Software System for Generating Population Statistics from Electrofishing Data-Users Guide for Microfish 3.0. U.S. Forest Service General Technical Report INT-254.Google Scholar
  57. Vollestad, L. A., E. M. Olsen & T. Forseth, 2002. Growth-rate variation in brown trout in small neighbouring streams: Evidence for density dependence? Journal of Fish Biology 61: 1513–1527.CrossRefGoogle Scholar
  58. Von Bertalanffy, L., 1938. A quantitative theory of organic growth (Inquiries on growth laws II). Human Biology 10: 181–213.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Simone Vincenzi
    • 1
  • Alain J. Crivellì
    • 2
  • Dusan Jesensek
    • 3
  • Jean-Francois Rubin
    • 4
  • Giulio A. De Leo
    • 1
  1. 1.Dipartimento di Scienze AmbientaliUniversità degli Studi di ParmaParmaItaly
  2. 2.Station Biologique de la Tour du Valat, Le SambucArlesFrance
  3. 3.Tolmin Angling AssociationMost na SociSlovenia
  4. 4.Ecole d’ingénieurs HESGenevaSwitzerland

Personalised recommendations