, Volume 583, Issue 1, pp 1–19 | Cite as

Do faunal assemblages reflect the exchange intensity in groundwater zones?

  • Susanne I. Schmidt
  • Hans Jürgen Hahn
  • Tom J. Hatton
  • William F. Humphreys
Primary Research Paper


The exchange of water with groundwater is a key determinant of water quality and faunal assemblage. Water exchange not only occurs with running waters, but also through percolation, interception (soil, porous alluvium), and evaporation. The aim of this study was to identify how different types of exchange were related to the groundwater faunal assemblage of an alluvial aquifer. Hydrological exchange is largely governed by pore space and thus ultimately by geological formation. In the Marbling Brook catchment of Western Australia the different geological formations did not eventuate in hydrochemically distinct groundwater zones. The cluster analysis of faunal assemblages revealed five groups within the faunal samples which did not reflect spatial patterns such as geological, chemical or topographic features. Discriminant analysis showed that these five groups were best characterized by a range of abiotic features including dissolved oxygen, land-use, and temperature. These variables signal different types and intensities of exchange with the surface.


Groundwater fauna Groundwater/surface water interactions Hydrological exchange Catchment 



S. Schmidt was funded by U.-Neumann-Stiftung, Essen, and FAZIT-Stiftung, Frankfurt. Field and laboratory work would not have been successful without the help of Gerald D. Watson and Robert J. Woodbury (both CSIRO Land and Water, Perth). Julia Hellweg and Jan Dunzweiler were a great help in the field and laboratory. Tuyen Pham did the chemical analyses. Jane McRae (CALM, Woodvale, Western Australia) checked the identification of cyclopoids. Stuart Halse (CALM, Woodvale, Western Australia), Mark Harvey (Western Australian Museum, Perth, Western Australia) and Peter Serov (UNE, Armidale, New South Wales, Australia) classified the ostracods, mites and bathynellids into morphotypes, respectively. Robert J. Woodbury (CSIRO Land and Water, Floreat) reviewed the manuscript. Discussions with Andrew Boulton (UNE, Armidale, New South Wales, Australia) improved this text.


  1. Bärlocher, F. & J. H. Murdoch, 1989. Hyporheic biofilms – a potential food source for interstitial animals. Hydrobiologia 184: 61–67.Google Scholar
  2. Beyer, W., 1964. Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve. Wasserwirtschaft-Wassertechnik 14: 165–168.Google Scholar
  3. Bloomfield, J. P., J. A. Barker & N. Robinson, 2005. Modeling fracture porosity development using simple growth laws. Ground Water 43: 314–326.PubMedCrossRefGoogle Scholar
  4. Bou, C., 1974. Les méthodes de récolte dans les eaux souterraines interstitielles. Annales de Spéléologie 29: 611–619.Google Scholar
  5. Boulton, A. J., H. M. Valett & S. G. Fisher, 1992. Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Archiv für Hydrobiologie 125: 37–61.Google Scholar
  6. Brosius, F., 2002. SPSS 11. mitp Verlag, Bonn.Google Scholar
  7. Brunke, M., 1999. Colmation and depth filtration within streambeds: retention of particles in hyporheic interstices. International Review of Hydrobiology. International Revue of Hydrobiology 84: 99–117.Google Scholar
  8. Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.CrossRefGoogle Scholar
  9. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  10. Clarke, K. R. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.Google Scholar
  11. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46: 213–226.Google Scholar
  12. Clarke, K. R. & R. M. Warwick, 1994. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation. Natural Environment Research Council, Plymouth.Google Scholar
  13. Datry, T., F. Malard & J. Gibert, 2005. Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. Journal of the North American Benthological Association 24: 461–477.Google Scholar
  14. Dole, M. J. & D. Chessel, 1985. Stabilité physique et biologique des milieux interstitiels. Cas de deux stations du Haut-Rhône. Annales de Limnologie 22: 69–81.Google Scholar
  15. Dole-Olivier, M. J., F. Malard & J. Gibert, 2005. Environmental gradients in ground waters. Main factors driving the composition of stygobiotic assemblages at a regional scale. In Gibert, J. (ed.), World Subterranean Biodiversity. Proceedings of an international symposium held on 8–10 December 2004 in Villeurbanne, 79–82.Google Scholar
  16. Duff, J. H. & F. J., Triska, 2000. Nitrogen biogeochemistry and surface-subsurface exchange in streams. In Jones J. B. & P. J. Mulholland (eds), Streams and ground waters. Academic Press, San Diego.Google Scholar
  17. Dumas, P. & G. Fontanini, 2001. Sampling fauna in aquifers: a comparison of net-sampling and pumping. Archiv für Hydrobiologie 150: 661–676.Google Scholar
  18. Engelman, L., 1998. Discriminant Analysis. In SPSS Inc. (ed.), SYSTAT® 8.0 – Statistics. SPSS Inc., Chicago, 245–296.Google Scholar
  19. Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Englewood Cliffs.Google Scholar
  20. Grimm, N. B., R. W. Sheibley, C. L. Crenshaw, C. N. Dahm, W. J. Roach & L. H. Zeglin, 2005. N retention and transformation in urban streams. Journal of the North American Benthological Society 24: 626–642.Google Scholar
  21. Hahn, H. J., 2002. Meiobenthic community response on land-use, geology and groundwater-surface water interactions: Distribution of meiofauna in the stream sediments and in the groundwater of the Marbling Brook catchment (Western Australia). Archiv für Hydrobiologie Supplement, Monographical Studies 139: 237–263.Google Scholar
  22. Hahn, H. J., 2006. A first approach to a quantitative ecological assessment of groundwater habitats: the GW-Fauna-Index. Limnologica 36: 119–137.Google Scholar
  23. Hahn, H. J. & A. Fuchs, 2005. Mapping the stygofauna of the State of Baden-Wuerttemberg, Southwest Germany. In Gibert, J. (ed.), World Subterranean Biodiversity. Proceedings of an international symposium held on 8–10 December 2004 in Villeurbanne 89–93.Google Scholar
  24. Hakenkamp, C. C., M. A. Palmer & B. R. James, 1994. Metazoans from a sandy aquifer: dynamics across a physically and chemically heterogeneous groundwater system. Hydrobiologia 287: 195–206.Google Scholar
  25. Harvey, J. W. & B. J. Wagner, 2000. Quantifying hydrologic interactions between steams and their subsurface. In Jones J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, San Diego.Google Scholar
  26. Hill, M. O., 1973. Reciprocal averaging: an eigenvector method of ordination. Journal of Ecology 61: 237–249.CrossRefGoogle Scholar
  27. Hinkle, S. R., J. H. Duff, F. J. Triska, A. Laenen, E. B. Gates, K. E. Bencala, D. A. Wentz & S. R. Silva, 2001. Linking hyporheic flow and nitrogen cycling near the Willamette River – a large river in Oregon, USA. Journal of Hydrology 244: 157–180.CrossRefGoogle Scholar
  28. Holsinger, J. R. & G. Longley, 1980. The subterranean amphipod crustacean fauna of an artesian well in Texas. Smithsonian Contributions to Zoology 308: 1–62.Google Scholar
  29. Inwood, S. E., J. L. Tank & E. J. Bernot, 2005. Patterns of denitrification associated with land use in 9 midwestern headwater streams. Journal of the North American Benthological Society 24: 227–245.CrossRefGoogle Scholar
  30. König, B., 2005. Biologisch begründetes Heterogenitätskriterium zur Gruppierung von Benthosprobenahmen nach einheitlichen Lebensgemeinschaften. In Deutsche Gesellschaft für Limnologie DGL (ed.), Tagungsbericht Potsdam, September 2004. DGL, Berlin.Google Scholar
  31. Malard, F. & F. Hervant. 1999. Oxygen supply and the adaptations of animals in groundwater. Freshwater Biology 41: 1–30.CrossRefGoogle Scholar
  32. Malard, F., K. Tockner, M. J. Dole-Olivier & J. V. Ward, 2002. A landscape perspective of surface – subsurface hydrological exchanges in river corridors. Freshwater Biology 47: 621–640.CrossRefGoogle Scholar
  33. Marmonier, P., M. J. Dole-Olivier & M. Creuzé des Châtelliers 1992. Spatial distribution of interstitial assemblages in the floodplain of the Rhône river. Regulated Rivers 7: 75–82.CrossRefGoogle Scholar
  34. Munzel, U. & L. A. Hothorn, 2001. A unified approach to simultaneous rank test procedures in the unbalanced one-way layout. Biometrical Journal 43: 553–569.CrossRefGoogle Scholar
  35. Quinn, G. P. & M. J. Keough, 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge.Google Scholar
  36. R Development Core Team, 2004. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  37. Rao, C. R., 1952. Advanced Statistical Methods in Biometry Research. Wiley, New York.Google Scholar
  38. Ronneberger, D., 1975. Zur Kenntnis der Grundwasserfauna des Saale-Einzugsgebietes (Thüringen). Limnologica 9: 323–419.Google Scholar
  39. Schmidt, S. I., 2005. Surface Water/Groundwater Interactions and their Association with Sediment Fauna in a Western Australian Catchment. Tectum Verlag, Marburg. ISBN 3–8288–8846–1.Google Scholar
  40. Schmidt, S. I., H. J. Hahn, T. Hatton, G. Watson & R. J. Woodbury, 2004. The net sampler - an efficient and inexpensive way to sample fauna of stream sediments and groundwater. Acta hydrochimica et hydrobiologica 32: 131–137.CrossRefGoogle Scholar
  41. Sokal, R. R. & F. J. Rohlf, 1995. Biometry: the Principles and Practices of Statistics in Biological Research. W.H. Freeman and Company, New York.Google Scholar
  42. Stanford, J. A., J. Ward & B. K. Ellis, 1994. Ecology of the alluvial aquifers of the Flathead River, Montana. In Gibert J., D. L. Danielopol, J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego, 367–390.Google Scholar
  43. Strayer, D. L., 1994. Limits to biological distributions in groundwater. In Gibert J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego, 287–310.Google Scholar
  44. Tesoriero, A. J., T. H. Spruill, H. W. J. Mew, K. M. Farrell & S. L. Harden, 2005. Nitrogen transport and transformation in a coastal plain watershed: influence of geomorphology on flow paths and residence times. Water Resources Research 41, doi W02008.Google Scholar
  45. Turner, J. V. & L. R. Townley, 2006. Determination of groundwater flow-through regimes of shallow lakes and wetlands from numerical analysis of stable isotope and chloride tracer distribution patterns. Journal of Hydrology 320: 451–483.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Susanne I. Schmidt
    • 1
  • Hans Jürgen Hahn
    • 2
  • Tom J. Hatton
    • 3
  • William F. Humphreys
    • 4
  1. 1.GSF - IGÖNeuherbergGermany
  2. 2.Universität Koblenz-LandauLandauGermany
  3. 3.CSIRO Black Mountain LaboratoriesActonAustralia
  4. 4.Western Australian MuseumWelshpool DCAustralia

Personalised recommendations