Advertisement

Hydrobiologia

, Volume 579, Issue 1, pp 211–218 | Cite as

Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.)

  • Chaohua Hu
  • Lei Zhang
  • David Hamilton
  • Wenbing Zhou
  • Tewu Yang
  • Duanwei Zhu
Primary Research Paper

Abstract

Eichhornia crassipes (Mart.) has strong ability to remove Cu2+ from copper-contaminated water. Physiological responses in E. crassipes exposed to known concentrations of Cu2+ were examined in this study, and demonstrated that E. crassipes could accumulate 314 mg kg−1 dry weight of Cu when exposed to 5 mg l−1 of Cu2+ for periods up to 14 d. However, there were marked changes in physiology of the plant commencing at Cu2+ concentrations of 1 mg l−1. Results of this study showed that E. crassipes could tolerate moderate concentrations (i.e. 0.5 mg l−1) of Cu2+, without significant changes in photosynthetic pigment concentrations, while high concentrations (i.e. 5 and 10 mg l−1) of Cu2+ resulted in substantial loss in pigment concentrations. Increases in malondiadehyde (MDA) content were also demonstrated in plant exposure to high Cu2+ concentrations. Soluble protein content increased to a level slightly higher than the control at <0.5 mg l−1 of Cu2+, but then decreased with exposure to >1 mg l−1 of Cu2+. Our results suggest that E. crassipes has a substantial capacity to accumulate copper when cultivated at moderate concentrations of Cu2+, without marked changes in its physiology. The findings indicate that E. crassipes is a promising possibility for phytoremediation of moderately Cu-contaminated water bodies.

Keywords

Eichhornia crassipes Copper Physiological responses Bioaccumulation 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (20577013) and the Scientific and Technological Innovation Scheme of Water Conservancy Department in China (5CX2003-02).

References

  1. Ali, M. B., P. Vajpayee, R. D. Tripathi, U. N. Rai, A. Kumar, N. Singh, H. M. Behl & S. P. Singh, 2000. Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L. Bulletin of Environmental Contamination and Toxicology 65: 573–582.PubMedCrossRefGoogle Scholar
  2. Assche, F. V. & H. M. M. Clijsters, 1990. Effects of metals on enzyme activity in plants. Plant Cell Environment 13: 195–206.CrossRefGoogle Scholar
  3. Baccouch, S., A. Chaoui & E. E. Ferjani, 1998. Nickel induced oxidative damage and antioxidatant responses in Zea mays shoots. Plant Physiology and Biochemistry 36: 689–694.CrossRefGoogle Scholar
  4. Barai, B. K., R. S. Singhal & P. R. Kulkarni, 1997. Optimization of a process for preparing carboxymethyl cellulose from water hyacinth (Eichhornia crassipes). Carbohydrate Polymers 32: 229–231.CrossRefGoogle Scholar
  5. Baszynski, T., A. Tukendorf, M. Ruszkowska, E. Skorzynska & W. Maksymiec, 1988. Characteristics of the photosynthetic apparatus of copper non-tolerant spinach exposed to excess copper. Journal of Plant Physiology 132: 708–713.Google Scholar
  6. Boller, M., 1997. Tracking heavy metals reveals sustainability deficits of urban drainage systems. Water Science and Technology 35: 77–78.CrossRefGoogle Scholar
  7. Bradford, M. N., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.PubMedCrossRefGoogle Scholar
  8. Brouwer, M. & T. H. Brouwer, 1998. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, Callinectes sapidus. Archives of Biochemistry and Biophysics 351: 257–264.PubMedCrossRefGoogle Scholar
  9. Brown, B. T. & B. M. Rattigan, 1979. Toxicity of soluble copper and other metal ions to Elodea canadensis. Environmental Pollution 20: 303–314.CrossRefGoogle Scholar
  10. Chen, E. L., Y. A. Chen, L. M. Chen & Z. H. Liu, 2002. Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiology and Biochemistry 40: 439–444.CrossRefGoogle Scholar
  11. Cheng, S. C., W. Grosse, F. Karrenbrock & M. Thoennessen, 2002. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering 18: 317–325.CrossRefGoogle Scholar
  12. Chua, H., 1998. Bio-accumulation of environmental residues of rare earth elements in aquatic flora Eichhornia crassipes (Mart.) Solms in Guangdong Province of China. The Science of the Total Environment 214: 79–85.CrossRefGoogle Scholar
  13. Devi, S. R. & M. N. V. Prasad, 1998. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: responses of antioxidant enzymes and antioxidants. Plant Science 138: 157–165.CrossRefGoogle Scholar
  14. De-Vos, C. H. R., W. M. Ten-Bookum, R. Voojs, H. Schat & L. J. De-Kok, 1993. Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiology and Biochemistry 31: 151–158.Google Scholar
  15. Epstein, P. R., 1998. Weeds bring disease to the East African waterways. Lancet 351: 577.CrossRefGoogle Scholar
  16. Fernandes, J. C. & F. S. Henriques, 1990. Biochemical, physiological and structural effects of excess copper in plants. The Botanical Review 57: 246–273.CrossRefGoogle Scholar
  17. Fritioff, A., L. Kautsky & M. Greger, 2005. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution 133: 265–274.PubMedCrossRefGoogle Scholar
  18. Gajalakshmi, S., E. V. Ramasamy & S. A. Abbasi, 2002. High rate compositing-vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms). Bioresource Technology 83: 235–239.PubMedCrossRefGoogle Scholar
  19. Ghabbour, E. A., G. Davies, Y. Y. Lam & M. E. Vozzela, 2004. Metal binding by humic acid isolated from water hyacinth plants (Eichhornia crassipes [Mart.] Solm-Laubach: Pontedericeae) in the Nile Delta, Egypt. Environmental Pollution 131: 445–451.PubMedCrossRefGoogle Scholar
  20. He, M. C., Z. J. Wang & H. X. Tang, 2001. Modeling the ecological impact of heavy metals on aquatic ecosystems: a framework for the development of an ecological model. The Science of the Total Environment 266: 291–298.PubMedCrossRefGoogle Scholar
  21. Heath, R. L. & L. Packer, 1968. Photoperoxidation in isolated chloroplast? Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189–198.PubMedCrossRefGoogle Scholar
  22. Jouili, H. & E. Ferjani, 2003. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. Plant Biology and Pathology 326: 639–644.Google Scholar
  23. Kamal, M., A. E. Ghaly, N. Mahmoud & R. Cote, 2004. Phytoaccumulation of heavy metals by aquatic plants. Environment International 29: 1029–1039.PubMedCrossRefGoogle Scholar
  24. Lasat, M. M., 2002. Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality 31: 109–120.PubMedCrossRefGoogle Scholar
  25. Lichtenthaler, H. K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Packer, L. & R. Douce (eds), Plant Cell Membranes. Academic Press, San Diego, pp 350–382.CrossRefGoogle Scholar
  26. Luna, C. M., C. A. Gonzalez & V. S. Trippi, 1994. Oxidative damage caused by excess of copper in oat leaves. Plant and Cell Physiology 35: 11–15.Google Scholar
  27. Johnson, C. M. & A. Ulrich, 1959. Analytical methods for use in plant analysis. Bulletin of the California Agricultural. Experimental Station No. 766.Google Scholar
  28. Jorge, L. G. T., R. P. V. Jose, G. D. L. Rosa & J. G. Parsons, 2005. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews 249: 1797–1810.CrossRefGoogle Scholar
  29. Li, W. P., J. Wang & W. Li, 1995. Application of water hyacinth to the removal of heavy metals from electroplate waste water. China Journal of Ecology 14: 30–35.Google Scholar
  30. Mal, T. K., P. Adorjan & A. L. Corbett, 2002. Effect of copper on growth of an aquatic macrophyte Elodea canadensis. Environmental Pollution 120: 307–311.PubMedCrossRefGoogle Scholar
  31. Mejare, M. & L. Bulow, 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology 19: 67–73.PubMedCrossRefGoogle Scholar
  32. Nedelkoska, T. V. & P. M. Doran, 2000. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering 13: 549–561.CrossRefGoogle Scholar
  33. Okamoto, O. K., E. Pinto, R. Latome, E. J. H. Bechara & P. Colepicolo, 2001. Antioxidant modulation in response to metal-induced oxidative stress in algal choroplasts. Archives of Environmental Contamination and Toxicology 40: 18–24.PubMedCrossRefGoogle Scholar
  34. Pioto, C. L R., A. Caconia & M. M. Souza, 1987. Utilization of water hyacinth for removal and recovery of silver from industrial wastewater. Water Science and Technology 19: 89–101.Google Scholar
  35. Prasad, M. N. V., P. Malec, A. Waloszek, M. Bojko & K. Strzalka, 2001. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science 161: 881–889.CrossRefGoogle Scholar
  36. Prasad, M. N. V. & K. Strzalka, 1999. Impact of heavy metals on photosynthesis. In Prasad M. N. V. & J. Hagemeyer (eds), Heavy Metal stress in Plants: from Molecules to Ecosystems. Springer Verlag, Berlin-Heidelberg, pp. 117–138.Google Scholar
  37. Sansalone, J. J., S. G. Buchberger & S. R. Al-Abed, 1996. Fractionation of heavy metals in pavement runoff. The Science of the Total Environment 189/190: 371–378.CrossRefGoogle Scholar
  38. So, L. M., L. M. Chu & P. K. Wong, 2003. Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.). Chemosphere 52: 1499–1503.PubMedCrossRefGoogle Scholar
  39. Soltan, M. E. & M. N. Rashed, 2003. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research 7: 321–334.CrossRefGoogle Scholar
  40. Weckx, J. E. J. & H. M. M. Clijsters, 1996. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiologia Plantarum 96: 506–512.CrossRefGoogle Scholar
  41. Xiong, Z. -T. & H. Wang, 2005. Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). Environmental Toxicology 20: 188–194.PubMedCrossRefGoogle Scholar
  42. Yang, X. E., Y. Feng, Z. L. He & P. J. Stoffella, 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18: 339–353.PubMedCrossRefGoogle Scholar
  43. Yu, Q. & Z. Rengel, 1999. Micronutrient deficiency influences plant growth and activities of superoxide dismutases in Narrow-leafed lupins. Annals of Botany 83: 175–182.CrossRefGoogle Scholar
  44. Zaranyika, M. F. & T. Ndapwadza, 1995. Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth (Eichhornia crassipes [Mart.]) in Mukuvisi and Manyame Rivers, Zimbabwe. Journal of Environmental Science and Health 30: 157–169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Chaohua Hu
    • 1
  • Lei Zhang
    • 2
  • David Hamilton
    • 3
  • Wenbing Zhou
    • 1
  • Tewu Yang
    • 4
  • Duanwei Zhu
    • 1
  1. 1.Key Laboratory of Subtropical Agriculture & Environment, Ministry of Agriculture, College of Resource and EnvironmentHuazhong Agricultural UniversityWuhanChina
  2. 2.Key State Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  3. 3.Centre for Biodiversity and Ecology ResearchUniversity of WaikatoHamiltonNew Zealand
  4. 4.College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations