Hydrobiologia

, Volume 575, Issue 1, pp 271–284 | Cite as

Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil

  • Sheyla R. M. Couceiro
  • Neusa Hamada
  • Sérgio L. B. Luz
  • Bruce R. Forsberg
  • Tânia Pena Pimentel
Primary Research Paper

Abstract

In the last few years, awareness in developed countries has increased regarding the importance of urban watercourses as essential natural resources for human well being. Macroinvertebrates have been used as bioindicators to complement physico-chemical evaluation of water quality after environmental perturbations. The city of Manaus is closely associated with the Amazonian rain forest and with its dense hydrographic network. Any perturbation, such as deforestation and/or water pollution in the city’s streams, therefore causes changes in the local ecosystem as the population increases. In this study, 65 streams were sampled in October and November 2003. Samples were taken from stream-bed sediment in the center of the channel and litter/sediment at the edge of the stream. Deforestation, total Nitrogen (TN), total Phosphorus (TP), depth, width, electrical conductivity, temperature and dissolved Oxygen (DO) were measured. A total of 115,549 specimens were collected, distributed among 152 taxa. Oligochaeta, Chironomus, Psychodidae and Ceratopogonidae were the taxa with the greatest frequencies of occurrence and the highest total abundances. Higher deforestation, TN and TP were correlated with lower DO and greater electrical conductivity, pH and water temperature. Deforestation, TN and TP were not associated with water velocity and stream width. Depth was the only variable correlated (negatively) with deforestation and not correlated with TN and TP. Greater deforestation, TN and TP were correlated with lower richness of taxa; but these variables did not affect abundance. Canonical Correspondence Analysis ordenated the streams into two groups; the majority of the streams were in the group with high levels of deforestation and with high values of TP, TN, pH, electrical conductivity and temperature, where the macroinvertebrates were reduced to a few taxa. The other group was composed of streams that were well oxygenated and deep, where richness of taxa was higher. These results indicate changes in community composition in response to changes in environmental conditions. The highest taxa correlation was with streams that were well oxygenated and had the greatest depth and water velocity. Species Indicator Analysis identified 29 taxa as indicators of nonimpacted streams, 16 as indicators of deforested streams and three as indicators of streams impacted by deforestation and domestic sewage. Of the total sampled streams, 80% were impacted by deforestation and water pollution and had fauna tolerant of these perturbations. Water pollution, represented by TN and TP, affected the macroinvertebrate fauna in a way similar to deforestation, i.e., causing reduction in taxa richness, simplifying the insect community composition without changing abundance. Use of the taxa suggested in this study as environmental indicators could improve the evaluation of water quality in the streams in Central Amazonia.

Keywords

Urban streams Aquatic macroinvertebrates Environmental indicators Deforestation Domestic sewage Neotropical streams 

Supplementary material

supp.doc (56 kb)
Supplementary material

References

  1. Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2005. Conservation of the biodiversity of Brazil’s inland waters. Conservation Biology 19(3): 646–652.CrossRefGoogle Scholar
  2. Alba-Tercedor, J. & A. Sánchez-Ortega, 1988. Un método rápido y simple para evaluar la calidad biológica de las aguas corrientes basado en el de Hellawell (1978). Limnética 4: 51–56.Google Scholar
  3. Alba-Tercedor, J., 1996. Macroinvertebrados acuáticos y calidad de las aguas de los rios. IV Simposio del agua in Andalucía (SIAGA). Almeria 2: 203–213.Google Scholar
  4. Allan, J. D., 1995. Stream Ecology: Structure and Function of Running Waters. Chapman & Hall, London.Google Scholar
  5. Assis, J. C. F., A. L. Carvalho & J. L. Nessimian, 2004. Composição e preferência por microhábitat de imaturos de Odonata (Insecta) em um trecho de baixada do Rio Ubatiba, Maricá-RJ, Brasil. Revista Brasileira de Entomologia 48(2): 273–282.CrossRefGoogle Scholar
  6. Barnes, R. S. K., P. Calow & R. J. W. Olive, 1995. Os invertebrados: uma nova síntese. Atheneu editora, São Paulo.Google Scholar
  7. Benstead, J. D. & C. M. Pringle, 2004. Deforestation alters the resource base and biomass of endemic stream insects in eastern Madagascar. Freshwater Biology 49: 490–501.CrossRefGoogle Scholar
  8. Benstead, J. P., M. M. Douglas & C. M. Pringle, 2003. Relationships of stream invertebrate communities to deforestations eastern Madagascar. Ecological Applications 13(5):1473–1490.Google Scholar
  9. Bobot, T. E. & N. Hamada, 2002. Plecoptera genera of two streams in Central Amazonia, Brazil. Entomotropica 17(3):299–301.Google Scholar
  10. Boujsen, B. H. & R. Barriga, 2002. Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshwater Biology 47: 2246–2260.CrossRefGoogle Scholar
  11. Callisto, M., F. Esteves, J. Gonçalves & J. Fonseca, 1998a. Benthic macroinvertebrates as indicators of ecological fragility of small rivers (igarapés) in a bauxite mining region of Brazilian Amazonia. Amazoniana 15(1): 1–9.Google Scholar
  12. Callisto, M., F. Esteves, J. Gonçalves & J. Fonseca, 1998b. Impacts of bauxite tailings on sediment granulometry and distribution of benthic macrofauna in an igarape in central Amazonia, Brazil. Journal of the Kansas Entomology Society 71(4): 443–451.Google Scholar
  13. Callisto, M., J. Fonseca & J. Goncalves, 1998c. Benthic macroinvertebrate community structure in an Amazonian lake impacted by bauxite tailing (Pará, Brazil). Verhandlungen Internationale Vereiningang für Theoretische und Angewandte Limnologie 26: 2053–2055.Google Scholar
  14. Callisto, M., M. Moretti & M. Goulart, 2000. Macroinvertebrados bentônicos como ferramenta para avaliar a saúde de riachos. Revista Brasileira de Recursos Hídricos 6(1): 71–82.Google Scholar
  15. Callisto, M., V. Vono, A. F. Barbosa & S. M. Santeiro, 2002. Chironomidae as a food resource for Leporinus amblyrhynchus (Teleostei: Characiformes) and Pimelodus maculatus (Teleostei: Siluriformes) in a Brazilian reservoir. Ludiana 3(1): 67–73.Google Scholar
  16. Camargo, A. F. L., L. M. Bini & A. Schiavetti, 1995. Avaliação dos impactos provocados pelas descargas de esgotos orgânicos em alguns corpos d’água do município de Rio Claro. In Esteves F.A. (ed.), Estrutura, Funcionamento e Manejo de ecossistemas brasileiros. Série Oecologia Brasiliensis, vol. 1, PPGE-UFRJ, Rio de Janeiro, 395–406.Google Scholar
  17. Chamizo-Garcia, H. A. & L. Orias-Arguedas, 1999. El ambiente y las enfermedades de transmisión hídrica en la cueca del rio Grande de Tárcoles, Costa Rica. Revista Costarricense de Salud Pública 8(15): 1409–1429.Google Scholar
  18. Clements, W. H., 1994. Benthic invertebrate community responses to heavy metals in the Upper Arkansas River Basin, Colorado. Journal of the North American Benthologic Society 13(1): 30–44.CrossRefGoogle Scholar
  19. Cleto-Filho, S. E. N. & I. Walker, 2001. Efeitos da ocupação urbana sobre a macrofauna de invertebrados aquáticos de um igarapé da cidade de Manaus/AM - Amazônia Central. Acta Amazonica 31(1): 69–89.Google Scholar
  20. Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. Bioscience 49: 119–140.CrossRefGoogle Scholar
  21. Cowell, R. K. & J. A. Coodington, 1994. Estimating terrestrial biodiversity through extrapolation. Philosophic Transactions of Royal Society 345: 101–118.Google Scholar
  22. Chu, E. W. & J. R. Karr, 2001. Environmental impact, concept and measurement of. Encyclopedia of Biodiversity 2: 557–576.Google Scholar
  23. Delgado, C. A. V., 2002. Spatial and temporal distribution patterns of Odonata larvae in streams of a terra firme forest of Central Amazon, Brazil. Journal of Freshwater Ecology 17(4): 555–561.Google Scholar
  24. Dickman, M. & G. Rygiel, 1996. Chironomid larval deformity frequencies, mortality and diversity in heavy-metal contaminated sediments of Canadian riverine wetland. Environmental International 22(6): 693–703.CrossRefGoogle Scholar
  25. Dodds, W. K., 2002. Freshwater Ecology, concepts and Environmental Applications. Aquatic Ecological Series. Academic Press, USA, San Diego.Google Scholar
  26. Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.CrossRefGoogle Scholar
  27. Epler, J. H., 1995. Identification Manual for the Larval Chironomidae (Diptera) of Florida. Revised edition. Florida Department of Environmental Protection, Tallahassee.Google Scholar
  28. England, L. E. & A. D. Rosemond, 2004. Small reduction in forest cover weaken terrestrial aquatic linkages in headwater streams. Freshwater Biology 49: 721–734.CrossRefGoogle Scholar
  29. Esteves, F. A., 1998. Fundamentos de limnologia. Interciência. 2ª edição, Rio de Janeiro.Google Scholar
  30. Fittkau, E. J., 1964. Remarks on limnology of Central Amazon rainforest streams. Verhandlungen Internationale Vereiningang für Theoretische und Angewandte Limnologie 15: 1092–1096.Google Scholar
  31. Froehlich, C. G., 2003 Stoneflies (Plecoptera: Perlidae) from the Brazilian Amazonia with the description of three new species and a key to Macrogynoplax. Studies on Neotropical Fauna and Environment 38(2): 129–134.CrossRefGoogle Scholar
  32. Galdean, N., M. Callisto & F. A. R. Barbosa, 2000. Lotic ecosystems of Serra do Cipó, southeast Brazil: water quality and a tentative classification based on the benthic macroinvertebrate community. Aquatic Ecosystem Health and Management 3: 545–552.CrossRefGoogle Scholar
  33. Hamada, N., J. W. Mccreadie & P. H. Adler, 2002. Species richness and spatial distribution of blackflies (Diptera: Simuliidae) in streams of Central Amazonia, Brazil. Freshwater Biology 47: 31–40.CrossRefGoogle Scholar
  34. Hamada, N. & S. R. M. Couceiro, 2003. An illustrated key to nymphs of Perlidae (Insecta: Plecoptera) genera in Central Amazonia, Brazil. Revista Brasileira de Entomologia 47(3): 477–480.CrossRefGoogle Scholar
  35. Henry, R., V. S. Uieda, A. A. O. Afonso & R. M. Kikuchi, 1994. Input of allochthonous and structure of fauna in a Brazilian headstream. Verhandlungen Internationale Vereiningang für Theoretische und Angewandte Limnologie 25: 1866–1870.Google Scholar
  36. Holzenthal, R. W. & A. M. O. Pes, 2004. A new genus of long-horned caddisfly from the Amazon basin (Trichoptera: Leptoceridae: Grumichellini). Zootaxa 621: 1–16.Google Scholar
  37. Junk, W. J., P. B. Barley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In D. P. Dodge (ed.), Proceedings of international large river symposium. Canadian Journal of Fisheries and Aquatic Sciences, 110–127.Google Scholar
  38. Karr, J. R. & E. Morishita-Rossano, 2001. Applying public health lessons to protect river health. Ecological and Civil Engineering 4(1): 3–18.CrossRefGoogle Scholar
  39. Kulmann, M. L., C. Y. Hayashida & R. P. A. Araújo, 2000. Using Chironomus (Chironomidae: Diptera) mentum deformities in environmental assessment. Acta Limnologica Brasiliensia 12: 55–61.Google Scholar
  40. Lima, W. P. & M. J. B. Zakia, 2001. Hidrobiologia de matas ciliares In Rodrigues R. R. & H. F. Leitão-filho (eds), Matas ciliares: conservação e recuperação. Editora da Universidade de São Paulo, São Paulo, 33–44.Google Scholar
  41. Martins, S. V., 2001. Recuperação de matas ciliares. Editora Aprenda Fácil, São Paulo.Google Scholar
  42. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of the North America. Kendall/Hunt Publishing Destespany, Dubuque, Iowa.Google Scholar
  43. Morley, S. A. & J. R. Karr, 2002. Assessing and restoring the health of urban streams in the Puget Sound Basin. Conservation Biology 16: 1498–1509.CrossRefGoogle Scholar
  44. Nagumo, T. & R. Hatano, 2000. Impact of nitrogen cycling associated with production and consumption of food on nitrogen pollution of stream water. Soil Science Plantation Nutrients 46: 325–342.Google Scholar
  45. Nessimian, J. L., L. F. M. Dorvillé, A. Sanseverino & D. F. Baptista, 1998. Relation between flood pulse and functional composition of the macroinvertebrate benthic fauna in the lower Rio Negro, Amazonas, Brazil. Amazoniana 15(1/2): 35–50.Google Scholar
  46. Nessimian, J. L., R. M. Amorim, A. L. Henriques-Oliveira & A. M. Sanseverino, 2003. Chironomidae (Diptera) do Estado do Rio de Janeiro: Levantamento dos gêneros e habitat de ocorrência. Publicações Avulsas do Museu Nacional 98: 1–16.Google Scholar
  47. Oliveira, C., 1996. Aspecto de biologia de comunidade de insetos aquáticos da ordem Trichoptera Kirby 1813, em córregos de cerrado do município de Pirenópolis, Estado de Goiás. PhD Thesis, Universidade de São Paulo, São Paulo, 120 pp.Google Scholar
  48. Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32: 333–365.CrossRefGoogle Scholar
  49. Penny, N. D., 1981 Neuroptera of the Amazon Basin. Acta Amazonica 11(4): 843–846.Google Scholar
  50. Perrow, M. R., A. J. D. Jowitt & S. R. Johnson, 1996. Fatores affecting the habitat selection of tench in a shallow eutrofic lake. Journal of Fish Biology 48: 859–870.CrossRefGoogle Scholar
  51. Pes, A. M. O., 2005. Taxonomia, estrutura e riqueza das assembléias de larvas e pupas de Trichoptera (Insecta), em igarapés na Amazônia Central. PhD thesis, Instituto Nacional de Pesquisas da Amazônia/Universidade Federal do Amazonas, Manaus.Google Scholar
  52. Pes, A. M. O., N. Hamada & J. L. Nessimian, 2005. Chaves de identificação de larvas para famílias e gêneros de trichoptera (Insecta) da Amazônia Central, Brasil. Revista Brasileira de Entomologia 49(2): 181–204.CrossRefGoogle Scholar
  53. Powell, J., Z. Ball J. Bails, 1996. Consensus building and grass roots efforts in a comprehensive urban watershed management program, Watershed 96, Baltimore (MD), US EPA, 228–230.Google Scholar
  54. Primack, R., R. Rozzi, P. Feinsinger & F. Massardo, 2001. Conservacion fuera de las áreas protegidas. In Primack R., R. Rozzi, P. Feinsinger & F. Massardo (eds), Fundamentos de conservación biológica: perspectivas latinoamericanas. Fondo de Cultura Económica, México, 521–557.Google Scholar
  55. Resh, V. H., A. V. Brown, A. P. Covick, M. E. Gurtz, H. G. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.CrossRefGoogle Scholar
  56. Roque, F. O., M. Pepinelli, E. N. Fragoso, W. A. Ferreira, P. R. Barillari, M. Y. Yoshinaga, S. T. Strixino, N. F. Verani, M. I. S. Lima, 2003. Ecologia de macroinvertebrados, peixes e vegetação ripária de um córrego de primeira ordem em região de cerrado do Estado de São Paulo (São Carlos, SP) In Ecótonos nas interfaces dos ecossistemas aquáticos. Rima, São Carlos, 313–338.Google Scholar
  57. Rosenberg, D. M. & V. H. Resh, 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In Rosenberg D. M. & V. H. Resh (eds), Freshwater biomonitoring and Benthic macroinvertebrates. Chapman & Hall, New York, 1–9.Google Scholar
  58. Roy, A. H., A. D. Rosemond, M. J. Paul, D. S., Leigh & J. B. Wallace, 2003. Stream macroinvertebrates response to catchment urbanization (Georgia, USA) Freshwater Biology 48: 329–346.CrossRefGoogle Scholar
  59. Sanseverino, A. & J. L. Nessimian, 1998. Habitat preference of Chironomidae larvae in na upland stream of Atlantic Forest, Rio de Janeiro State, Brazil. Verhandlungen Internationale Vereiningang für Theoretische und Angewandte Limnologie 26: 2141–2144.Google Scholar
  60. Scrimgeour, G. C. & P. A. Chambers, 2000. Cumulative effects of pulp mill and municipal effluent on epilithic biomass and nutrient limitation in large northern river ecosystem. Canadian Journal of Fisheries and Aquatic Science 57: 1342–1354.CrossRefGoogle Scholar
  61. Silva, M. S. R., J. F. Ramos & A. G. N. Pinto, 2001. Metais de transição nos sedimentos de igarapés de Manaus. Acta Limologica Brasiliensia 11(2): 89–100.Google Scholar
  62. Sonneman, J. A., C. J. Wash, P. F. Breen & A. K. Sharpe, 2001. Effects of urbanization on streams of Melbourne region, Victoria, Australia. II. Benthic diatom communities. Freshwater Biology 46: 553–565.CrossRefGoogle Scholar
  63. Takeda, A. M., M. C. F. Perreira & A. R. Barbosa, 2000. Zoobenthos survey of the pantanal, Mato Grosso do Sul, Brazil, In: P. W. Willink, B. Chernoff, L. E. Alonso, J. R. Montambault & R. Lourival (eds), Rapid Assessment Program, 49–55.Google Scholar
  64. Taylor, S. L., S. Roberts, C. J. Wash & B. E. Hatt, 2004. Catchment urbanization and increased benthic algal biomass in streams. Linking mechanisms to management. Freshwater Biology 49: 835–851.CrossRefGoogle Scholar
  65. Thorne, R. St. J. & W. P. Williams, 1997. The response of benthic macroinvertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshwater Biology 37: 671–686.CrossRefGoogle Scholar
  66. Trayler, K. M. & J. A. Davis, 1998. Forestry impacts and the vertical distribution of stream invertebrates in south-west Australia. Freshwater Biology 40: 331–342.CrossRefGoogle Scholar
  67. Trivinho-Strixino, S. & G. Strixino, 1995. Larvas de Chironomidae (Diptera) do Estado de São Paulo: Guia de identificação e diagnose dos gêneros. Programa de Pós-graduação da Universidade Federal de São Carlos, São Carlos, 229 pp.Google Scholar
  68. Uieda, V. S. & R. M. Kikuchi, 1995. Entrada de material alóctone (detritos e invertebrados terrestres) num pequeno curso de água corrente na cuesta de Botucatu, São Paulo. Acta Liminologica Brasiliensia 7: 105–114.Google Scholar
  69. Valderrama, J. C., 1981. The simultaneous analysis of total N and P in natural waters. Marine Chemistry 10: 1009–1022.CrossRefGoogle Scholar
  70. Walker, I., 1986. Experiments on colonization on small water bodies by Culicidae and Chironomidae as a function of decomposing plant substrates and their implications for natural Amazonian ecosystems. Amazoniana 10(1): 113–125.Google Scholar
  71. Walker, I., 1990. Ecologia e biologia dos igapós e igarapés. Ciência Hoje 11(64): 46–52.Google Scholar
  72. Walker, I., 1994. The benthic litter-dwelling macrofauna of tha amazonian frest stream Tarumã-Mírim: patterns of colonization and their implications for community stability. Hydrobiologia 294: 75–92.Google Scholar
  73. Wang, F., A. Tessier & H. Landis, 2001. Oxygen measurements in the burrows of freshwater insects. Freshwater Biology 46: 317–327.CrossRefGoogle Scholar
  74. Wash, C. J., 2000. Urban impacts on the ecology of receiving waters: a framework for assessment, conservation and restoration. Hydrobiologia 431: 107–114.CrossRefGoogle Scholar
  75. Wash, C. J., A. K. Sharpe, P. F. Breen & J. A. Sonneman, 2001. Effects of urbanization on streams of the Melbourne region, Victoria, Australia. I. Benthic macroinvertebrate communities. Freshwater Biology 46: 535–551.CrossRefGoogle Scholar
  76. Waters, T. F., 1995. Sediment in Streams: Sources, Biological Effects and Control. American Fisheries Society Monograph 7, Bathesda, Maryland, 252pp.Google Scholar
  77. Wiggins, G. B., 1998. Larvae of the North American Caddisfly Genera (Trichoptera). University Buffalo, London.Google Scholar
  78. Zar, J.R., 1996. Biostatistical Analysis. Prentice Hall Inc., New Jersey.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Sheyla R. M. Couceiro
    • 1
  • Neusa Hamada
    • 2
  • Sérgio L. B. Luz
    • 3
  • Bruce R. Forsberg
    • 4
  • Tânia Pena Pimentel
    • 4
  1. 1.Instituto de Ciências – ICC sulUniversidade de BrasíliaBrasiliaBrazil
  2. 2.Coordenação de Pesquisas em EntomologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  3. 3.Centro de Pesquisas Leônidas Maria Deane, BiodiversidadeFundação Oswaldo CruzManausBrazil
  4. 4.Coordenação de Pesquisas em EcologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations