Advertisement

Hydrobiologia

, Volume 574, Issue 1, pp 1–11 | Cite as

Long-term limnological research and monitoring at Crater Lake, Oregon

  • Gary L. Larson
  • Robert Collier
  • Mark Buktenica
Crater Lake, Oregon

Abstract

Crater Lake is located in the caldera of Mount Mazama in Crater Lake National Park, Oregon. The lake has a surface area of about 53 km2at an elevation of 1882 m and a maximum depth of 594 m. Limited studies of this ultraoligotrophic lake conducted between 1896 and 1981, lead to a 10-year limnological study to evaluate any potential degradation of water quality. No long-term variations in water quality were observed that could be attributed to anthropogenic activity. Building on the success of this study, a permanent limnological program has been established with a long-term monitoring program to insure a reliable data base for use in the future. Of equal importance, this program serves as a research platform to develop and communicate to the public a better understanding of the coupled biological, physical, and geochemical processes in the lake and its surrounding environment. This special volume represents our current state of knowledge of the status of this pristine ecosystem including its special optical properties, algal nutrient limitations, pelagic bacteria, and models of the inter-relationships of thermal properties, nutrients, phytoplankton, deep-water mixing, and water budgets.

Keywords

Crater Lake Limnology Lake monitoring Water quality Secchi disk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boss, E., R. Collier, G. Larson & W. Pegau, 2007. Measurements of spectral optical properties and their relation to biogeochemical variable and processes in Crater Lake, Crater Lake National Park, OR. Hydrobiologia 574: 149–159.Google Scholar
  2. Buktenica, M., S. Girdner, G. Larson & C. D. McIntire, 2007. Variability of kokanee and rainbow trout food habits, distribution, and population dynamics, in an Ultraoligotrophic Lake with no manipulative management. Hydrobiologia 574: 235–264.Google Scholar
  3. Crawford, G. B. & R. W. Collier, 2007. Long-term observations of deepwater renewal in Crater Lake, Oregon. Hydrobiologia 574: 47–68.Google Scholar
  4. Dalm, C. N., D. W. Larson, N. S. Geiger & L. K. Herrera, 1990. Secchi disk, photometry, and phytoplankton data from Crater Lake: Long-term trends and relationships. In Drake E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosystem Study. Pacific Division, American Association of the Advancement of Science, San Francisco, California: 143–152.Google Scholar
  5. Dymond, J., R. Collier, J. McManus & G. Larson, 1996. Unbalanced particle flux budgets in Crater Lake, Oregon: Implications for edge effects and sediment focusing in lakes. Limnology and Oceanography 41: 732–743.Google Scholar
  6. Edmondson, W. T., 1991. The uses of ecology: Lake Washington and beyond. University of Washington Press, Seattle.Google Scholar
  7. Fennel, K., R. Collier, G. Larson, G. Crawford & E. Boss, 2007. Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake. Hydrobiologia 574: 265–280.Google Scholar
  8. Goldman, C. R., 1988. Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultra-oligotrophic Lake Tahoe, California-Nevada. Limnology and Oceanography 33: 1321–1333.Google Scholar
  9. Groeger, A., 2007. Nutrient limitation in Crater Lake, Oregon. Hydrobiologia 574: 205–216.Google Scholar
  10. Hargreaves, B., S. Girdner, M. Buktenica, R. Collier, E. Urbach & G. L. Larson, 2007. Ultraviolet radiation and bio-optics in Crater Lake, Oregon. Hydrobiologia 574: 107–140.Google Scholar
  11. Jassby, A.D., J. E. Reuter & C. R. Goldman, 2003. Determining long-term water quality change in the presence of climate variability: Lake Tahoe (U.S.A.). Can. J. Fish. Aquat. Sci. 60: 1452–1461.CrossRefGoogle Scholar
  12. Karnaugh, E. N., 1988. Structure, abundance, and distribution of pelagic zooplankton in a deep, oligotrophic caldera lake. MS thesis, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon.Google Scholar
  13. Larson, D. W., 1972. Temperature, transparency, and phytoplankton productivity in Crater Lake, Oregon. Limnology and Oceanography 17: 410–417.CrossRefGoogle Scholar
  14. Larson, D. W., 1983. The Crater Lake study: detection of possible optical deterioration of a rare, unusually deep caldera lake in Oregon, USA. Verhandlungen International Vereingung fur Theoretische und Angewandte Limnologie 22: 513–517.Google Scholar
  15. Larson, G. L., 1996. Development of a 10-year limnological study of Crater Lake, Crater Lake National Park, Oregon, USA. Lake and Reservoir Management 12: 221–229.CrossRefGoogle Scholar
  16. Larson, G. L., R. Hoffman, B. Hargreaves & R. Collier, 2007a. Predicting Secchi disk depth from average beam attenuation in a deep, ultra-clear lake. Hydrobiologia 574: 141–148.Google Scholar
  17. Larson, G. L., R. L. Hoffman, C. D. McIntire, M. W. Buktenica & S. F. Girdner, 2007b. Thermal, chemical, and optical properties of Crater Lake, Oregon, Hydrobiologia 574: 69–84.Google Scholar
  18. Larson, G. L., C. D. McIntire & R. W. Jacobs (eds), 1993. Crater Lake Limnological Studies, Final Report. National Park Service Technical Report NPS/PNR/OSU/NRTR-93/03.Google Scholar
  19. Larson, G. L., C. D. McIntire, M. Buktenica, S. Girdner & R. Truitt, 2007c. Distribution and abundance of zooplankton populations in Crater Lake, Oregon. Hydrobiologia 574: 217–233.Google Scholar
  20. Magnuson, J. J., 1990. Long-term ecological research and the invisible present. BioScience 40:495–501.CrossRefGoogle Scholar
  21. McIntire, C. D., G. Larson & R. Truitt, 2007. Seasonal and interannual variability in the taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon. Hydrobiologia 574: 179–204.Google Scholar
  22. Nathenson, M., C. Bacon & D. Ramsey, 2007. Subaqueous geology and a filling model for Crater Lake, Oregon. Hydrobiologia 574: 13–27.Google Scholar
  23. National Research Council, 1992. Restoration of aquatic ecosystems: science, technology, and public policy. National Academy of Sciences.Google Scholar
  24. Oros, D, R. Collier & B. Simonet, 2007. The extent and significance of petroleum hydrocarbon contamination in Crater Lake, Oregon. Hydrobiologia 574: 85–105.Google Scholar
  25. Redmond, K., 2007. Evaporation and the Hydrologic Budget of Crater Lake, Oregon. Hydrobiologia 574: 29–46.Google Scholar
  26. Sakamoto, M., 1997. Eutrophication. In. Biswas, A. K (ed.), Water resources: Environmental Planning. Management, and Development, McGraw-Hill, New York, 297–379.Google Scholar
  27. Urbach, E., K. Vergin, G. Larson & S. Giovannoni, 2007. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with surface food web structure and stable deep water populations. Hydrobiologia 574: 161–177.Google Scholar
  28. Urbach, E., K. L. Vergin, L. Young, A. Morse, G. L. Larson & S. J. Giovannoni, 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography 46: 557–572.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Gary L. Larson
    • 1
  • Robert Collier
    • 2
  • Mark Buktenica
    • 3
  1. 1.USGS Forest and Rangeland Ecosystem Science CenterCorvallisUSA
  2. 2.College of Oceanography and Atmospheric SciencesOregon State UniversityCorvallisUSA
  3. 3.Crater Lake National ParkCrater LakeUSA

Personalised recommendations