Hydrobiologia

, Volume 575, Issue 1, pp 69–81 | Cite as

Microzooplankton grazing of phytoplankton in a tropical upwelling region

  • George B. McManus
  • Barbara A. Costas
  • Hans G. Dam
  • Rubens M. Lopes
  • Salvador A. Gaeta
  • Sylvia M. Susini
  • Carol H. Rosetta
Primary Research Paper

Abstract

We measured grazing by herbivorous zooplankton (<200 μm fraction) in coastal and slope regions of the South Brazil Bight. Using the dilution technique, we performed nine experiments during the austral summer, when nutrient-rich South Atlantic Central Water is present on the shelf, and five during winter. These experiments provide the first estimates of microzooplankton grazing in the western South Atlantic Ocean. Model II regression showed a strong relationship between phytoplankton intrinsic growth rates and grazing, with a slope of 0.64 (±0.28; 95% confidence interval) indicating that microzooplankton grazing could account for the majority of phytoplankton mortality. Both phytoplankton growth and microzooplankton grazing were higher during the summer upwelling season, compared to winter. For the two experiments that were conducted in oligotrophic slope water, grazing accounted for >80% of phytoplankton production. A comparison of incubations with and without added inorganic nutrients showed no consistent stimulation of phytoplankton growth (slope of enriched versus unenriched treatments not significantly different from 1). Estimates from microscopic counts of heterotrophic organisms >10 μm indicated that copepod nauplii comprised the largest share of the microzooplankton biomass (mean 62.4 ± 5.8% SE). Grazing estimates were not correlated with microzooplankton biomass, whether or not nauplii were included, suggesting that most of the grazing was done by nano-sized zooplankton.

Keywords

South Atlantic ciliate growth upwelling Cabo Frio South Brazil Bight 

Supplementary material

supp.pdf (37 kb)
Supplementary material

References

  1. Alldredge, A. L. & C. C. Gotschalk, 1989. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep-Sea Res. 36: 159–171.CrossRefGoogle Scholar
  2. Bakun, A., 1993. The California Current, Benguela Current, and Southwestern Atlantic Shelf Ecosystems: a comparative approach to identifying factors regulating biomass yields. In Sherman K., L. M. Alexander, B. D. Gold (eds), Large Marine Ecosystems: Stress, Mitigation, and Sustainability. AAAS Press, Washington, DC, 199–221.Google Scholar
  3. Bakun, A. & R. H. Parrish, 1990. Comparative studies of coastal pelagic fish reproductive habitats: the Brazilian sardine (Sardinella aurita). Journal du Conseil 46: 269–283.Google Scholar
  4. Calbet, A. & M. R. Landry, 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography 49: 51–57.CrossRefGoogle Scholar
  5. Campos, E., J. Goncalves & Y. Ikeda, 1995. Water mass characteristics and geostrophic circulation in the South Brazil Bight: summer of 1991. Journal of Geophysical Research 100: 18537–18550.CrossRefGoogle Scholar
  6. Castro, B. M. & L. B. D. Miranda, 1998. Physical oceanography of the western Atlantic continental shelf located between 4° N and 34° S. In Robinson A. R., K. H. Brink (eds), The Sea: the Global Coastal Ocean. John Wiley and Sons, New York, 209–251.Google Scholar
  7. Crocker, K. & C. Gotschalk, 1997. Short communication. A simple seawater-powered plankton wheel. Journal of Plankton Research 19: 155–158.Google Scholar
  8. Dagg, M., 1995. Copepod grazing and the fate of phytoplankton in the northern Gulf of Mexico. Continental Shelf Research 15: 1303–1317.CrossRefGoogle Scholar
  9. Dolan, J. R., C. L. Gallegos & A. Moigis, 2000. Dilution effects on microzooplankton in dilution grazing experiments. Marine Ecology-Progress Series 200: 127–139.Google Scholar
  10. FAO, 2003. FAO Yearbook of Fishery Statistics. FAO, Rome.Google Scholar
  11. Fileman, E. & P. Burkill, 2001. The herbivorous impact of microzooplankton during two short-term Lagrangian experiments off the NW coast of Galicia in summer 1998. Progress in Oceanography 51: 361–383.CrossRefGoogle Scholar
  12. Fileman, E. S., D. G. Cummings & C. A. Llewllyn, 2002. Microplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast. Journal of the Marine Biological Association of the United Kingdom 82: 359–368.CrossRefGoogle Scholar
  13. Froneman, P. W. & C. D. McQuaid, 1997. Preliminary investigation of the ecological role of microzooplankton in the Kariega Estuary, South Africa. Estuarine Coastal and Shelf Science 45: 689–695.CrossRefGoogle Scholar
  14. Froneman, P. W. & R. Perissinoto, 1996a. Microzooplankton grazing and protozooplankton community structure in the South Atlantic sector of the Southern Ocean. Deep-Sea Research Part I 43: 703–721.CrossRefGoogle Scholar
  15. Froneman, P. W. & R. Perissinoto, 1996b. Structure and grazing of the microzooplankton communities of the Subtropical Convergence and a warm-core eddy in the Atlantic sector of the Southern Ocean. Marine Ecology-Progress Series 135: 237–245.Google Scholar
  16. Garcia-Pamanes, J. & J. R. Lara-Lara, 2001. Microzooplankton grazing in the Gulf of California. Ciencias Marinas 27: 73–90.Google Scholar
  17. Gifford, D. J., 1988. Impact of grazing by microzooplankton in the Northwest arm of Halifax Harbour, Nova Scotia. Marine Ecology-Progress Series 47: 249–258.Google Scholar
  18. Gifford, D. J., L. M. Fessenden, P. R. Garrahan & E. Martin, 1995. Grazing by Microzooplankton and Mesozooplankton in the High-Latitude North-Atlantic Ocean – Spring Versus Summer Dynamics. Journal of Geophysical Research-Oceans 100: 6665–6675.CrossRefGoogle Scholar
  19. Gonzalez-Rodriguez, E., 1994. Yearly variation in primary productivity of marine phytoplankton from Cabo Frio (RJ, Brazil) region. Hydrobiologia 294: 145–156.CrossRefGoogle Scholar
  20. Gonzalez-Rodriguez, E., J. L. Valentin, D. L. Andre & S. A. Jacob, 1992. Upwelling and downwelling at Cabo Frio (Brazil): comparison of biomass and primary production responses. Journal of Plankton Research 14: 289–306.Google Scholar
  21. Gustafson, D. E., D. K. Stoecker, M. D. Johnson, W. F. Van Heukelem & K. Sneider, 2000. Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405: 1049–1052.PubMedCrossRefGoogle Scholar
  22. Kamiyama, T., 1995. Change in the microzooplankton community during decay of a Heterosigma akashiwo bloom. Journal of Oceanography 51: 279–287.CrossRefGoogle Scholar
  23. Landry, M. & A. Calbet, 2004. Reality check on microbial food web interactions in dilution experiments: responses to the comments of Dolan and McKeon. Ocean Science Discussions 1: 65–76.CrossRefGoogle Scholar
  24. Landry, M. R., 1993. Estimating rates of growth and grazing mortality of phytoplankton by the dilution method. In Kemp P. F., B. F. Sherr, E. B. Sherr, J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Ann Arbor: 715–722.Google Scholar
  25. Landry, M. R., S. L. Brown, L. Campbell, J. Constantinou & H. B. Liu, 1998. Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep-Sea Research Part II-Topical Studies in Oceanography 45: 2353–2368.CrossRefGoogle Scholar
  26. Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine microzooplankton. Marine Biology 67: 283–288.CrossRefGoogle Scholar
  27. Liu, H. B., K. Suzuki & T. Saino, 2002. Phytoplankton growth, and microzooplankton grazing in the subarctic Pacific Ocean and the Bering Sea during summer 1999. Deep-Sea Research Part I-Oceanographic Research Papers 49: 363–375.CrossRefGoogle Scholar
  28. Longhurst, A. & D. Pauly, 1987. Ecology of Tropical Oceans. Academic Press, San Diego.Google Scholar
  29. Matsuura, Y., 1996. A probable cause of recruitment failure of the Brazilian sardine, Sardinella aurita, population during the 1974/75 spawning seasons. South African Journal of Marine Science 17: 29–35.Google Scholar
  30. Mauchline, J., 1998. The Biology of Calanoid Copepods. Academic Press, New York.Google Scholar
  31. Nagasaki, K., M. Ando, I. Imai, S. Itakura & Y. Ishida, 1994a. Virus-like particles in Heterosigma akashiwo (Rhaphidophyceae): a possible red tide disintegration mechanism. Marine Biology 119: 307–312.CrossRefGoogle Scholar
  32. Nagasaki, K., M. Ando, S. Itakura, I. Imai & Y. Ishida, 1994b. Viral mortality in the final stage of Heterosigma akashiwo (Raphidophyceae) red tide. Journal of Plankton Research 16: 1595–1599.Google Scholar
  33. Obayashi, Y. & E. Tanoue, 2002. Growth and mortality rates of phytoplankton in the northwestern North Pacific estimated by the dilution method and HPLC pigment analysis. Journal of Experimental Marine Biology and Ecology 280: 33–52.CrossRefGoogle Scholar
  34. Olson, M. B. & S. L. Strom, 2002. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep-Sea Research Part II-Topical Studies in Oceanography 49: 5969–5990.CrossRefGoogle Scholar
  35. Ouzounov, D., A. Savtchenko, G. Leptoukh, B. Zhou, D. Ostrenga, C. Deroo & L. Gonzalez, 2004. GES DAAC tools for accessing Terra and Aqua MODIS data. Pages 1109–1113 in Climate Change Processes in the Stratosphere, Earth-Atmosphere-Ocean Systems, and Oceanographic Processes from Satellite Data.Google Scholar
  36. Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon, New York.Google Scholar
  37. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnology and Oceanography 34: 1097–1103.CrossRefGoogle Scholar
  38. Ryther, J. H., 1967. Occurrence of red water off Peru. Nature 214: 1318–1319.CrossRefGoogle Scholar
  39. Sieracki, M. E., P. G. Verity & D. K. Stoecker, 1993. Plankton community response to sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom. Deep-Sea Research Part II 40: 213–225.CrossRefGoogle Scholar
  40. Smetacek, V. S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology 84: 239–251.CrossRefGoogle Scholar
  41. Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd edn. W.H. Freeman and Company, New York.Google Scholar
  42. Stoecker, D. K., 1999. Mixotrophy among dinoflagellates. Journal of Eukaryotic Microbiology 46: 397–401.Google Scholar
  43. Strickland, J. D. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada.Google Scholar
  44. Strom, S. & M. Strom, 1996. Microzooplankton growth, grazing & community structure in the northern Gulf of Mexico. Marine Ecology-Progress Series 130: 229–240.Google Scholar
  45. Uye, S. I, 1991. Temperature-dependent development and growth of the planktonic copepod Paracalanus sp. in the laboratory. Bulletin of Plankton Society, Japan Special Volume: 627–636.Google Scholar
  46. Valentin, J. L., D. L. Andre & S. A. Jacob, 1987. Hydrobiology in the Cabo Frio (Brazil) upwelling: two-dimensional structure and variability during a wind cycle. Continental Shelf Research 7: 77–88.CrossRefGoogle Scholar
  47. Verity, P. G., & C. Langdon, 1984. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. Journal of Plankton Research 6: 859–868.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • George B. McManus
    • 1
  • Barbara A. Costas
    • 1
  • Hans G. Dam
    • 1
  • Rubens M. Lopes
    • 2
  • Salvador A. Gaeta
    • 2
  • Sylvia M. Susini
    • 3
  • Carol H. Rosetta
    • 1
  1. 1.Department of Marine SciencesUniversity of ConnecticutGrotonUSA
  2. 2.Instituto OceanográficoUniversidade de São PauloSão PauloBrazil
  3. 3.Universidade Estadual de Santa CruzIlheusBrazil

Personalised recommendations