Advertisement

Hydrobiologia

, Volume 573, Issue 1, pp 75–87 | Cite as

Benthic diatoms as indicators of eutrophication in tropical streams

  • Brent J. BellingerEmail author
  • Christine Cocquyt
  • Catherine M. O’Reilly
Primary Research Paper

Abstract

Diatoms are frequently used as indicators of eutrophication in temperate systems, but little is known about their application to impacted African tropical systems. Five streams located within Gombe Stream National Park and five streams supporting human settlements draining into Lake Tanganyika, East Africa, were investigated for species composition, richness and diversity of epilithic algae. In addition, a trophic diatom index (TDI) developed for monitoring European rivers was applied to these tropical systems. 54 specific and infraspecific diatom taxa representing 20 genera were identified for all sites with Achnanthes s.l., Gomphonema and Navicula s.l. being the most common genera. Species richness varied between 10 and 21 in disturbed streams and 13 and 19 in undisturbed streams. Nutrients were significantly enriched in streams draining the deforested watersheds but indices of diversity and evenness (Shannon H, J and Simpson–Yule D, E) did not show any significant differences between streams in forested and deforested watersheds. Significant differences were observed between pooled data for the TDI between forested and deforested watersheds. Analysis of percent pollution tolerant diatom taxa indicates that organic pollution of streams in deforested watersheds may be contributing to eutrophication. This study shows that African diatoms, cosmopolitan or resembling well-known North American and European taxa, allows for trophic indices tailored to the autecological preferences of species to be applied to new regions, although intensive studies on these African taxa will lead to more accurate results. Measures of species-richness and diversity, historically used to describe the state of an ecosystem, may not be suitable to evaluate streams which are not grossly polluted.

Keywords

diatoms Trophic Diatom Index (TDI) Lake Tanganyika streams eutrophication algae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.doc (42 kb)

References

  1. Biggs B. J. F. (1996). Patterns in benthic algae of streams. In: Stevenson, R. J., Bothwell, M. L. and Lowe, R. L. (eds) Algal Ecology: Freshwater Benthic Ecosystems, pp 31–56. Academic Press, San DiegoGoogle Scholar
  2. Burce, A. & C. M. O’Reilly, 2003. Nutrient limitation in tropical streams of Tanzania. University of Arizona, 53–56Google Scholar
  3. Caljon A. G. and Cocquyt C. (1992). Diatoms from surface sediments of the northern part of Lake Tanganyika. Hydrobiologia 230: 135–156CrossRefGoogle Scholar
  4. Cocquyt C. (1998). Diatoms from the northern basin of Lake Tanganyika. Bibliotheca Diatomologica 39: 1–274Google Scholar
  5. Cocquyt C. (1999). Seasonal variations of epilithic diatom communities in the northern basin of Lake Tanganyika. Systematics and Geography of Plants 69: 265–273Google Scholar
  6. Cocquyt C. (2000). Biogeography and species diversity of diatoms in the Northern basin of Lake Tanganyika. Advances in Ecological Research 31: 125–150CrossRefGoogle Scholar
  7. Cocquyt C. (2003). Amphora calumeticoides spec. nov (Bacillariophyta), an endemic diatom from Lake Tanganyika. Journal of Great Lakes Research 29: 581–587CrossRefGoogle Scholar
  8. Cocquyt C., Caljon A. G. and Vyverman W. (1991). Seasonal and spatial aspects of phytoplankton along the north-eastern coast of Lake Tanganyika. Annales de Limnologie 27: 215–225CrossRefGoogle Scholar
  9. Cocquyt, C. & R. Jahn, in press. Surirella nyassae O. Mu¨ller, S. malombae O. Müller, S. chepurnovii Cocquyt & R. Jahn nov. (Bacillanophyta) – typification and variability of three closely related East African diatoms. Nova HedwigaGoogle Scholar
  10. Cocquyt C. and Schram D. (2000). Diatom assemblages in surface sediments along the east coast of Lake Tanganyika. Hydrobiologia 436: 59–71CrossRefGoogle Scholar
  11. Cohen A. S., Bills R., Cocquyt C. and Caljon A. G. (1993). The impact of sediment pollution on biodiversity in Lake Tanganyika. Conservation Biology 7: 667–677CrossRefGoogle Scholar
  12. Taylor J. C., Laas A. and Vosloo A. (2004). Determining the possible application value of diatoms as indicators of general water quality: A comparison with SASS 5. Water SA 30: 325–332Google Scholar
  13. Descy J. P. (1979). A new approach to water quality estimation using diatoms. Nova Hedwigia 64: 305–323Google Scholar
  14. Fore L. S. and Grafe C. (2002). Using diatoms to assess the biological condition of large rivers in Idaho (USA). Freshwater Biology 47: 2015–2037CrossRefGoogle Scholar
  15. Gasse F. (1986). East African Diatoms. Taxonomy, ecological distribution. Bibliotheca Diatomologica. 11: 1–202Google Scholar
  16. Gomá J., Ortiz R., Cambra J. and Ector L. (2004). Water quality evaluation in Catalonian Mediterranean rivers using epilithic diatoms as bioindicators. Vie et Milieu-Life and Environment 54: 81–90Google Scholar
  17. Gómez N. and Licursi M. (2001). The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35: 173–181CrossRefGoogle Scholar
  18. Harding W. R., Archibald C. G. M. and Taylor J. C. (2005). The relevance of diatoms for water quality assessment in South Africa: A position paper. Water SA 31: 41–46Google Scholar
  19. Hill W. R. (1996). Effects of light. In: Stevenson, R. J., Bothwell, M. L. and Lowe, R. L. (eds) Algal Ecology: Freshwater Benthic Ecosystems, pp 121–148. Academic Press, San DiegoGoogle Scholar
  20. Hustedt, F., 1930. Die Kieselalgen. In: Rabenhorst, Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Teal 1, Leipzig, Acad. Verlag: 1–920Google Scholar
  21. Hustedt, F., 1959. Die Kieselalgen. In: Rabenhorst, Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Teal 3, Leipzig, Acad. Verlag: 1–845Google Scholar
  22. Hustedt, F., 1961. Die Kieselalgen. In: Rabenhorst, Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Acad. Verlag: 1–816Google Scholar
  23. Jahn, R., Kusber, W.-H., 2006, Algaterra Information System (online), Botanic Garden and Botanical Museum Berlin-Dahlem, FU-Berlin. http://www.algaterra.orgGoogle Scholar
  24. Jarvie H. P., Lycett E., Neal C. and Love A. (2002). Patterns in nutrient concentrations and biological quality indices across the upper Thames river basin, UK. The Science of the Total Environment 282–283: 263–294CrossRefGoogle Scholar
  25. Jüttner I., Rothfritz H. and Ormerod S. J. (1996). Diatoms as indicators of river quality in the Nepalese Middle Hills with consideration of the effects of habitat-specific sampling. Freshwater Biology 36: 475–486CrossRefGoogle Scholar
  26. Jüttner I., Sharma S., Dahal B. M., Ormerod S. J., Chimonides P. J. and Cox E. J. (2003). Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology 48: 2065–2084CrossRefGoogle Scholar
  27. Kelly M. G. (2003). Short term dynamics of diatoms in an upland stream and implications for monitoring eutrophication. Environmental Pollution 125: 117–122PubMedCrossRefGoogle Scholar
  28. Kelly, M. G., C. Adams, A. C. Graves, J. Jamieson, J. Krokowski, E. Lycett, J. Murray-Bligh, S. Pritchard and c. Wilkins, 2001. The Trophic Diatom Index: A user’s manual. E2/TR2. Almondsbury, Bristol: 1–135Google Scholar
  29. Kelly M. G., Penny C. J. and Whitton B. A. (1995). Comparative performance of benthic diatom indices used to asess river water quality. Hydrobiologia 302: 179–188Google Scholar
  30. Kelly M. G. and Whitton B. A. (1995). The trophic diatom index: A new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444CrossRefGoogle Scholar
  31. Kelly M. G. and Whitton B. A. (1998). Biological monitoring of eutrophication in rivers. Hydrobiologia 384: 55–67CrossRefGoogle Scholar
  32. Kempton R. A. (1979). The structure of species abundance and measurement of diversity. Biometrics 35: 307–321CrossRefGoogle Scholar
  33. Krammer K. and Lange-Bertalot H. (1986). Bacillariophyta: Naviculaceae. Stuttgart, Gustav Fischer, 1–876Google Scholar
  34. Krammer K. and Lange-Bertalot H. (1988). Bacillariophyta: Bacillariaceae, Epithemiaceae, Surirellaceae. Stuttgart, Gustav Fischer, 1–596Google Scholar
  35. Licursi M. and Gómez N. (2002). Benthic diatoms and some environmental conditions in three lowland streams. Annales de Limnologie 38: 109–118CrossRefGoogle Scholar
  36. Lobo E. A., Callegaro V. L. M., Hermany G., Gómez N. and Ector L. (2004). Review of the use of microalgae in South America for monitoring rivers, with special reference to diatoms. Vie et Milieu-Life and Environment 54: 105–114Google Scholar
  37. Lobo E. A., Katoh K. and Aruga Y. (1995). Response of epilithic diatom assemblages to water pollution in rivers in the Tokyo Metropolitan area, Japan. Freshwater Biology 34: 191–204CrossRefGoogle Scholar
  38. Lomardozzi, D. & C. M. O’Reilly, 2003. The effects of deforestation on nutrient concentrations in tributaries of Lake Tanganyika. University of Arizona: 47–51Google Scholar
  39. Lowe R. L. and Pan Y. (1996). Benthic algal communities as biological monitors. In: Stevenson, R. J., Bothwell, M. L. and Lowe, R. L. (eds) Algal Ecology: Freshwater Benthic Ecosystems, pp 705–739. Academic Press, San DiegoGoogle Scholar
  40. Lung’ayia, H. B. O., 2002. Assessment of water quality using diatoms as bio-indicators in catchments of Lake Victoria, Kenya. 1–202. Vrije Universiteit BrusselGoogle Scholar
  41. Minshall G. W., Cummins K. W., Petersen R. C., Cushing C. E., Bruns D. A., Sedell J. R. and Vannote R. L. (1985). Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences 42: 1045–1055Google Scholar
  42. Newall P. and Walsh C. J. (2005). Response of epilithic diatom assemblages to urbanization influences. Hydrobiologia 532: 53–67CrossRefGoogle Scholar
  43. O’Reilly C. M., Alin S. R., Plisnier P.-D., Cohen A. S. and McKee B. A. (2003). Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768PubMedCrossRefGoogle Scholar
  44. Potapova M., Charles D. F., Ponander K. C. and Winter D. M. (2004). Quantifying species indicator values for trophic diatom indices: A comparison of approaches. Hydrobiologia 517: 25–41CrossRefGoogle Scholar
  45. Prescott, G. W., J. Bamrick, E. T. Cawley & W. G. Jaques, 1978. How to know the freshwater algae, McGraw-Hill Science/Engineering/MathGoogle Scholar
  46. Prygiel J. and Coste M. (1993). The assessment of water quality in the Artois-Picardie water basin (France) by the use of diatom indices. Hydrobiologia 269/270: 343–349CrossRefGoogle Scholar
  47. Round F. E. (1991). Diatoms in river water-monitoring studies. Journal of Applied Phycology 3: 129–145CrossRefGoogle Scholar
  48. Soininen J. (2002). Responses of epilithic diatom communities to environmental gradients in some Finnish rivers. International Review of Hydrobiology 87: 11–24CrossRefGoogle Scholar
  49. Soininen J. and Könönen K. (2004). Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquatic Ecology 38: 63–75CrossRefGoogle Scholar
  50. Southwood, T. R. E., & P. A. Henderson, 2000. Ecological Methods, Blackwell ScienceGoogle Scholar
  51. Taylor J. C., Harding W. R. and Archibald C. G. M. (2005). Diatoms as indicators of water quality in the Jukskei-Crocodile river system in 1956 and 1957, a re-analysis of diatom count data generated by BJ Cholnoky. Water SA 31: 237–246Google Scholar
  52. Verburg P., Heck R. E. and Kling H. (2003). Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–507PubMedCrossRefGoogle Scholar
  53. Zar, J. H., 1998. Biostatistical Analysis, Prentice HallGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Brent J. Bellinger
    • 1
    Email author
  • Christine Cocquyt
    • 2
  • Catherine M. O’Reilly
    • 3
  1. 1.Department of Biological SciencesMichigan Technological UniversityHoughtonUSA
  2. 2.National Botanic Garden of Belgium, Meise and Department of BiologyGhent UniversityGhentBelgium
  3. 3.Department of BiologyBard CollegeAnnandale-on-HudsonUSA

Personalised recommendations