, Volume 571, Issue 1, pp 237–259

Recent histories of six productive lakes in the Irish Ecoregion based on multiproxy palaeolimnological evidence

  • D. Taylor
  • C. Dalton
  • M. Leira
  • P. Jordan
  • G. Chen
  • L. León-Vintró
  • K. Irvine
  • H. Bennion
  • T. Nolan
Primary Research Paper


Palaeolimnological data from six mesotrophic, eutrophic and hypertrophic lakes in the Irish Ecoregion, in the form of microfossil (cladocera, diatoms and pollen) and sediment chemistry data from radiometrically dated sediment cores, were used to reconstruct past variations in lake water quality and catchment conditions. Basal sediments from sediment cores from the six sites ranged in age from the late 18th century to the early 20th century. A weighted averaging partial least squares regression model was developed to reconstruct past epilimnetic total phosphorus concentrations. The results indicate that all but one of the study sites currently are in a far more productive state compared with the beginning of the sediment core record and that those same five lakes have experienced accelerated enrichment post c. 1980. Two of the sites demonstrated long-term enrichment, in one case beginning in the late 19th century, while both eutrophication and oligotrophication have occurred at three sites. The results highlight the difficulties in applying a general temporal end-point for reference conditions and demonstrate that productive lakes in the Irish Ecoregion have complex, locally specific and often long histories of enrichment. These may not be responsive to reduced external loadings of phosphorus and, as a result, restoration could prove particularly challenging. The results also provide evidence of the ways in which palaeolimnological techniques can assist implementation of the EU Water Framework Directive.


Eutrophication oligotrophication palaeoecology phosphorus reference WFD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.doc (83 kb)


  1. Allott N. A. (1990). Limnology of Six Western Irish Lakes. University of Dublin, DublinGoogle Scholar
  2. Alonso, M., 1996. Crustacea, Branchiopoda. Fauna Ibérica, 7. Museo Nacional de Ciencias Naturales. CSIC. MadridGoogle Scholar
  3. Andersen J. H., Conley D. J. and Hedal S. (2004). Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Marine Pollution Bulletin 49: 283–290PubMedCrossRefGoogle Scholar
  4. Anderson N. J. (1990). Biostratigraphy and taxonomy of some small Stephanodiscus and Cyclostephanos species in a eutrophic lake and their ecological implications. British Phycological Journal 25: 217–235Google Scholar
  5. Anderson N. J. (1995). Naturally eutrophic lakes: reality, myth or myopia?. Trends in Ecology and Evolution 10: 137–138CrossRefGoogle Scholar
  6. Anderson N. J. (1997). Historical changes in epilimnetic phosphorus concentrations in six rural lakes in Northern Ireland. Freshwater Biology 38: 427–440CrossRefGoogle Scholar
  7. Anderson N. J., Jeppesen E. and Søndergaard M. (2005). Ecological effects of reduced nutrient loading (oligotrophication): an introduction. Freshwater Biology 50: 1589–1593CrossRefGoogle Scholar
  8. Anderson N. J. and Korsman T. (1990). Land-use change and lake acidification: iron age de-settlement in northern Sweden as a pre-industrial analogue. Philosophical Transactions of the Royal Society, London, B 327: 373–376Google Scholar
  9. Anderson N. J. and Rippey B. (1994). Monitoring lake recovery from point-source eutrophication: the use of diatom-inferred␣epilimnetic total phosphorus and sediment chemistry. Freshwater Biology 32: 625–639CrossRefGoogle Scholar
  10. Anderson N. J., Rippey B. and Gibson C. E. (1993). A comparison of sedimentary and diatom-inferred phosphorous profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253: 357–366CrossRefGoogle Scholar
  11. Anon, 1997. Blackwater Catchment Rural Development Strategy. Unpublished report. Brady Shipman Martin, Kirk McClure Morton, Minnock Barron, BelfastGoogle Scholar
  12. Anon, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, 1–327Google Scholar
  13. Appleby P. G. (2001). Chronostratigraphic techniques in recent sediments. In: Last, W. M. and Smol, J. P. (eds) Tracking Environmental Change Using Lake Sediments. Vol. 1: Basin Analysis, Coring and Chronological Techniques, pp 171–203. Kluwer Academic Publishers, DordrechtGoogle Scholar
  14. Barker P. A., Pates J. M., Payne R. J. and Healey R. M. (2005). Changing nutrient levels in Grasmere, English Lake District, during recent centuries. Freshwater Biology 50: 1971–1981CrossRefGoogle Scholar
  15. Battarbee R. W. (1978). Observations on the recent history of Lough Neagh and its drainage basin. Philosophical Transactions of the Royal Society of London, Series B 281: 303–345Google Scholar
  16. Battarbee R. W. (1984). Diatom analysis and the acidification of lakes. Philosophical Transactions of the Royal Society of London, Series B 305: 451–477Google Scholar
  17. Battarbee R. W. (1986). The eutrophication of Lough Erne inferred from changes in the diatom assemblages of 210Pb and 137Cs-dated sediment cores. Proceedings of the Royal Irish Academy 86B: 141–168Google Scholar
  18. Battarbee R. W. (1999). The importance of palaeolimnology to lake restoration. Hydrobiologia 395/396: 149–159CrossRefGoogle Scholar
  19. Battarbee R. W., Jones V. J., Flower R. J., Cameron N. G., Bennion H., Carvalho L. and Juggins S. (2001). Diatoms. In: Smol, J. P. and Birks, W. M. Last, H. J. B. (eds) Tracking Environmental Change Using Lake Sediments Vol. 3: Terrestrial, Algal, and Siliceous Indicators, pp 155–202. Kluwer Academic Publishers, DordrechtGoogle Scholar
  20. Bennett K. D. and Willis K. J. (2001). Pollen. In: Smol, J. P., Birks, H. J. B. and Last, W. M. (eds) Tracking Environmental Change Using Lake Sediments Vol. 3: Terrestrial, Algal, and Siliceous Indicators, pp 5–32. Kluwer Academic Publishers, DordrechtGoogle Scholar
  21. Bennion H., Fluin J. and Simpson G. L. (2004). Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. Journal of Applied Ecology 41: 124–138CrossRefGoogle Scholar
  22. Bennion H., Juggins S. and Anderson N. J. (1996). Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environmental Science and Technology 30: 2004–2007CrossRefGoogle Scholar
  23. Bennion H. and Smith M. A. (2000). Variability in the water chemistry of ponds in south-east England, with special reference to the seasonality of nutrients and implications for modelling trophic status. Hydrobiologia 436: 145–158CrossRefGoogle Scholar
  24. Bergstrom A. K., Blomqvist P. and Jansson M. (2005). Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnology and Oceanography 50: 987–994CrossRefGoogle Scholar
  25. Birks H. J. B. (1995). Quantitative palaeoenvironmental reconstructions. In: Maddy, D. and Brew, J. S. (eds) Statistical Modelling of Quaternary Science Data, pp 161–254. QRA, CambridgeGoogle Scholar
  26. Birks H. J. B., Juggins S. and Line J. M. (1990a). Lake surface-water chemistry reconstructions from palaeolimnological data. In: Mason, B. J. (eds) The Surface Waters Acidification Programme, pp 301–313. Cambridge University Press, CambridgeGoogle Scholar
  27. Birks H. J. B., Line J. M., Juggins S. and Stevenson A. C. (1990b). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London, Series B 327: 263–278Google Scholar
  28. Boyle J. F. (2001). Inorganic geochemical methods in palaeolimnology. In: Last, W. M. and Smol, J. P. (eds) Tracking Environmental Change Using Lake Sediments Vol. 2 Physical and Geochemical Methods, pp 83–141. Kluwer Academic Publishers, AmsterdamGoogle Scholar
  29. Bowman J. J. and Clabby K. J. (1998). Water quality of rivers and lakes in the Republic of Ireland. In: Wilson, J. G. (eds) Eutrophication in Irish Waters, pp 55–63. Royal Irish Academy, DublinGoogle Scholar
  30. Juggins S. (1993). Weighted averaging partial least square regression (WA-PLS) : an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502CrossRefGoogle Scholar
  31. Šmilauer P (2002). CANOCO 4.5. Biometris, WagenigenGoogle Scholar
  32. Bradshaw E. G. and Anderson N. J. (2001). Validation of a diatom-phosphorus calibration set for Sweden. Freshwater Biology 46: 1035–1048CrossRefGoogle Scholar
  33. Bradshaw E. G., Anderson N. J., Jensen J. P. and Jeppesen E. (2002). Phosphorus dynamics in Danish lakes and the implications for diatom ecology and palaeoecology. Freshwater Biology 47: 1963–1975CrossRefGoogle Scholar
  34. Clarke K. R. and Warwick R. M. (1998). A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35: 523–531CrossRefGoogle Scholar
  35. Davies S. J., Metcalfe S. E., Bernal-Brooks F., Chacon-Torres A., Farmer J. G., MacKenzie A. B. and Newton A. J. (2005). Lake sediments record sensitivity of two hydrologically closed upland lakes in Mexico to human impact. Ambio 34: 470–475PubMedGoogle Scholar
  36. EHS (Environment, Heritage Service), 2000. Managing the water environment in Northern Ireland 2000. EHS, BelfastGoogle Scholar
  37. Edwards K. J. and Whittington G. (2001). Lake sediments, erosion and landscape change during the Holocene in Britain and Ireland. Catena 42: 143–173CrossRefGoogle Scholar
  38. Engstrom D. R. and Wright H. E. (1984). Chemical stratigraphy of lake sediments as a record of environmental change. In: Hawarth, E. Y. and Lund, J. G. W. (eds) Lake Sediments and Environmental History, pp 11–67. Leicester University Press, LeicesterGoogle Scholar
  39. Irvine K. and Free G. (2002). The use of members of the family Chydoridae (Anomopoda, Branchiopoda) as an indicator of lake ecological quality in Ireland. Biology and Environment: Proceedings of the Royal Irish Academy 102B: 81–91Google Scholar
  40. Irvine K., García-Criado F., Gyllstrom M., Kornijow R., Miracle M. R., Nykannen M., Bareiss C., Cerbin S., Salujoe J., Franken R., Stephens D. and Moss M. (2003). The distribution of chydorids (Branchiopoda, Anomopoda) in European shallow lakes and its application to ecological quality monitoring. Archiv Fur Hydrobiologie 156: 181–202CrossRefGoogle Scholar
  41. Foy R. H., Smith R. V., Jordon C. and Lennox S. D. (1995). Upward trend in soluble phosphorus loadings to Lough Neagh despite phosphorus reduction at sewage treatment works. Water Research 29: 1051–1063CrossRefGoogle Scholar
  42. Foy R. H., Lennox S. D. and Gibson C. E. (2003). Changing perspectives on the importance of urban phosphorus inputs as the cause of nutrient enrichment in Lough Neagh. The Science of the Total Environment 310: 87–99PubMedCrossRefGoogle Scholar
  43. Frey D. G. (1959). The taxonomic and phyolgenetic significance of the head pores of the genus Chydoridae (Cladocera). Internationale Revue der Gesamten Hydrobiologie 44: 27–50Google Scholar
  44. Frey D. G. (1960). The ecological significance of cladoceran remains in lake sediments. Ecology 41: 684–699CrossRefGoogle Scholar
  45. Frey D. G. (1962a). Cladocera from the Eemian interglacial of Denmark. Journal of Paleontology 36: 1133–1154Google Scholar
  46. Frey D. G. (1962b). Supplement to: the taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Internationale Revue der Gesamten Hydrobiologie 47: 603–609Google Scholar
  47. Frey D. G. (1964). Differentiation of Alona costata SARS from two related species (Cladocera, Chydoridae). Crustaceana 8: 159–173CrossRefGoogle Scholar
  48. Frey D. G. (1986). Cladocera analysis. In: Berglund, B. E. (eds) Handbook of Holocene Palaeoecology and Palaeohydrology, pp 667–701. Whiley & sons, LondonGoogle Scholar
  49. Gibson C. E. (1991). Contributions to the regional limnology of Northern Ireland: (4) the lakes of Co. Tyrone. The Irish Naturalists’ Journal 23: 430–436Google Scholar
  50. Gibson C. E., Wu Y., Smith S. J. and Wolfe-Murphy S. A. (1995). Synoptic limnology of a diverse geological region; catchment and water chemistry. Hydrobiologia 306: 213–227CrossRefGoogle Scholar
  51. Goulden C. E. and Frey D. G. (1963). The occurrence and significance of lateral head pores in the Genus Bosmina (Cladocera). Internationale Revue der Gesamten Hydrobiologie 48: 513–522Google Scholar
  52. Hall R. I., Leavitt P. R., Smol J. P. and Zirnhelt N. (1997). Comparison of diatoms, fossil pigments and historical records as measures of lake eutrophication. Freshwater Biology 38: 401–417CrossRefGoogle Scholar
  53. Hall R. I. and Smol J. P. (1992). A weighted-average regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 27: 417–434CrossRefGoogle Scholar
  54. Hill M. O. and Gauch H. G. (1980). Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58CrossRefGoogle Scholar
  55. Hilton J., Lishman J. P. and Millington A. (1986). A comparison of some rapid techniques for the measurement of density in soft sediments. Sedimentology 33: 777–781CrossRefGoogle Scholar
  56. HMSO (Her Majesty’s Stationary Office), 1990. Environmental Issues in Northern Ireland. House of Commons Environment Committee, First Report, LondonGoogle Scholar
  57. Hobbs W., Irvine K. and Donohue I. (2005). Using sediments to assess the resistance of a calcareous lake to diffuse nutrient loading. Archiv Fur Hydrobiologie 164: 109–125CrossRefGoogle Scholar
  58. Igoe F., O’Grady M. F., Tierney D. and Fitzmaurice P. (2003). Arctic char Salvelinus alpinus (L.) in Ireland – a millennium review of its distribution and status with conservation recommendations. Biology and Environment: Proceedings of the Royal Irish Academy 103B: 9–22Google Scholar
  59. Irvine K., Allott N., Mills P. and Free G. (2000). The use of empirical relationships and nutrient export coefficients for predicting phosphorus concentrations in Irish lakes. Verhandlungen Internationale Vereinigung fur Limnologie 27: 1127–1131Google Scholar
  60. Irvine K., Allott N., Caroni R., Free G. and White J. (2001). The Ecological Assessment of Irish Lakes: the Development of a New Methodology Suited to the Needs of the EU Directive for Surface Waters. EPA, WexfordGoogle Scholar
  61. Jennings, E., P. Mills P. Jordan, J.-P. Jensen, M. Søndergaard, A. Barr, G. Glasgow & K. Irvine, 2003. Eutrophication from agricultural sources seasonal patterns & effects of phosphorous. Final Research Report (2000-LS-2.1.7-M2). EPA, WexfordGoogle Scholar
  62. Jones V. J., Stevenson A. C. and Battarbee R. W. (1986). Lake acidification and the land-use hypothesis: a mid-post-glacial analogue. Nature 322: 157–158CrossRefGoogle Scholar
  63. Jordan P. and Rippey B. (2003). Lake sedimentary evidence of phosphorus, iron and manganese mobilisation from intensively fertilised soils. Water Research 37: 1426–1432PubMedCrossRefGoogle Scholar
  64. Jordan P., Rippey B. and Andersen N. J. (2001). Modelling diffuse phosphorus loads from land to freshwater using the sedimentary record. Environmental Science Technology 35: 815–819PubMedCrossRefGoogle Scholar
  65. Juggins, S., 2003. C2 Software for ecological and palaeoecological data analysis and visualisation. User guide Version 1.3. Newcastle University, Newcastle upon TyneGoogle Scholar
  66. Korsman T. and Birks H. J. B. (1996). Diatom-based water chemistry reconstructions from northern Sweden: a comparison of different reconstruction techniques. Journal of Paleolimnology 15: 65–77CrossRefGoogle Scholar
  67. Köster D., Racca J. M. J. and Pienitz R. (2004). Diatom-based inference models and reconstructions revisited: methods and transformations. Journal of Paleolimnology 32: 233–246CrossRefGoogle Scholar
  68. Krammer, K. & H. Lange-Bertalot, 1986–1991a,b. Bacillariophyceae. 1–4 Teil. Süßwasserflora von Mitteleuropa. Gustav Fischer-Verlag, StuttgartGoogle Scholar
  69. Leira, M., P. Jordan, D. Taylor, C. Dalton, H. Bennion, N. Rose & K. Irvine, in press. Assessing the ecological status of candidate reference lakes in Ireland using palaeolimnology. Journal of Applied EcologyGoogle Scholar
  70. Linnane S. M. and Murray D. A. (2002). Hindcasting recent trends in trophic status of lakes on the River Shannon – results from short sediment core analyses. Verhandlungen Internationale Vereinigung fur Limnologie 28: 1050–1055Google Scholar
  71. Lucey J., Bowman J. J., Clabby K. J., Cunningham P., MacCártaigh M., McGarrigle M. and Toner P. F. (1999). Water Quality in Ireland. EPA, WexfordGoogle Scholar
  72. McGarry, A., 1991. Nuclear Fallout and Heavy Metal Deposition in Ombrogenous Peats in Ireland. PhD thesis, National University of Ireland, DublinGoogle Scholar
  73. Mackereth F. J. (1966). Some chemical observations of post-glacial lake sediments. Philosophical Transactions of the Royal Society of London, Series B 250: 165–213Google Scholar
  74. Miettinen J. O., Simola H., Gronlund E. and Lahtinen J. (2005). Limnological effects of growth and cessation of agricultural land use in Ladoga Kerelia: sedimentary pollen and diatom analyses. Journal of Paleolimnology 34: 229–243CrossRefGoogle Scholar
  75. Mitchell P. I., Schell W. R., McGarry A., Ryan T. P., Sánchez-Cabeza J. A. and Vidal-Quadras A. (1992). Studies of the vertical distribution of 134Cs, 137Cs, 238Pu, 239Pu, 240Am, 241Am and 210Pb in ombrogeneous mires at mid-latitudes. Journal of Radioanalysis and Nuclear Chemistry 156: 361–387CrossRefGoogle Scholar
  76. Moss B., McGowan S. and Carvalho L. (1994). Determination of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland meres. Limnology and Oceanography 39: 1020–1029CrossRefGoogle Scholar
  77. Murphy T., Hall K. and Yesaki I. (1983). Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnology and Oceanography 28: 58–69CrossRefGoogle Scholar
  78. Neal C., House W. A., Jarvie H. P., Neal M. and Hill L. (2005). Phosphorus concentrations in the River Dun, the Kennet and Avon Canal and the River Kennet, southern England. Science of the Total Environment 344: 107–128PubMedGoogle Scholar
  79. Nowlan N. V., Mitchell P. I., Murray D. A., Leon-Vintro L. and Seymore E. (2000). Measurement and interpretation of lead-210 and caseium-137 profiles in relation to recent sedimentation in some Irish lakes. Verhandlungen Internationale Vereinigung fiir Theoretische und Angewandte limnologie 27: 2303–2306Google Scholar
  80. (1982). Eutrophication of Waters, Monitoring, Assessment and Control. OECD, ParisGoogle Scholar
  81. Parise G. and Riva A. (1982). Cladocera remains in recent sediments as indices of cultural eutrophication of Lake Como. Schweiz Z. Hydrol 44: 277–278Google Scholar
  82. Phillips G., Kelly A., Pit J.-A., Sanderson R. and Taylor E. (2005). The recovery of a very shallow eutrophic lake, 20 years after the control of effluent derived phosphorus. Freshwater Biology 50: 1628–1638CrossRefGoogle Scholar
  83. Räsänen, J., T. Kauppila & V.-P. Salonen, 2006. Sediment-based investigation of naturally or historically eutrophic lakes – implications for lake management. Journal of Environmental Management 79: 253–265Google Scholar
  84. Reavie E. D., Neill K. E., Little J. L. and Smol J. P. (2006). Cultural eutrophication trends in three southeastern Ontario lakes: a paleolimnological perspective. Lake and Reservoir Management 22: 44–58CrossRefGoogle Scholar
  85. Reid M. (2005). Diatom-based models for reconstructing past water quality and productivity in New Zealand lakes. Journal of Paleolimnology 33: 13–38CrossRefGoogle Scholar
  86. Renberg I. (1991). The HON-Kajak sediment corer. Journal of Paleolimnology 6: 167–170Google Scholar
  87. Rippey B. and Anderson N. J. (1996). Reconstruction of lake phosphorus loading and dynamics using the sedimentary record. Environmental Science, Technology 30: 1786–1788CrossRefGoogle Scholar
  88. Rippey B., Anderson N. J. and Foy R. H. (1997). Accuracy of diatom-inferred total phosphorus concentrations and the accelerated eutrophication of a lake due to reduced flushing and increased internal loading. Canadian Journal of Fisheries and Aquatic Sciences 54: 2637–2646CrossRefGoogle Scholar
  89. Robbins J. A., Edgington D. N. and Kemp A. L. W. (1978). Comparative 210Pb, 137Cs, and pollen geochronologies of sediments from Lakes Ontario and Erie. Quaternary Research 10: 256–278CrossRefGoogle Scholar
  90. Smith R. J., Wolfe-Murphy S. A., Enlander I. and Gibson C. E. (1991). The Lakes of Northern Ireland: an Annotated Inventory. HMSO, BelfastGoogle Scholar
  91. Smith V. H., Tilman G. D. and Nekola J. C. (1999). Eutrophication impacts of nutrient inputs to freshwater, marine and terrestrial ecosystems. Environmental Pollution 100: 179–196PubMedCrossRefGoogle Scholar
  92. Smith R. V., Jordan C. and Annett J. A. (2005). A phosphorus budget for Northern Ireland: inputs to inland and coastal waters. Journal of Hydrology 304: 193–202CrossRefGoogle Scholar
  93. Smol J. P. (1981). Problems associated with the use of “species diversity” in palaeolimnological studies. Quaternary Research 15: 209–212CrossRefGoogle Scholar
  94. Smol J. P., 2002. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. Arnold Publishers, London; Co-published by Oxford University Press, New YorkGoogle Scholar
  95. Søndergaard M., Peder J. P. and Jeppesen E. (1999). Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409: 145–152CrossRefGoogle Scholar
  96. Stoermer E. F. and Smol J. P. (1999). The Diatoms. Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UKGoogle Scholar
  97. Toner P., Bowman J., Clabby K., Lucey J., McGarrigle M., Clenaghan C., Cunningham P., Delaney J., O’Boyle S., MacCárthaigh M., Craig M. and Quinn R. (2005). Water Quality in Ireland 2001–2003. EPA, WexfordGoogle Scholar
  98. Tunney H., Breeuwsma A., Withers P. J. A. and Ehlert P. A. I. (1997). Phosphorus fertilizer strategies: past, present and future. In: Tunney, H., Carton, O. T., Brookes, P. C., and Johnson, A. E. (eds) Phosphorus Losses from Soil to Water, pp 358–361. CAB International, New YorkGoogle Scholar
  99. Ulén B. M. and Kalisky T. (2005). Water erosion and phosphorus problems in an agricultural catchment – need for natural research for implementation of the EU Water Framework Directive. Environmental Science, Policy 8: 477–484CrossRefGoogle Scholar
  100. Wemeare, A., 2005. Influence of catchment characteristics on the relationship between land use and lake water quality in County Clare. Ph D thesis, University of Dublin, DublinGoogle Scholar
  101. Went A. E. J. (1945). The distribution of Irish char (Salvelinus spp.). Biology and Environment: Proceedings of the Royal Irish Academy 50B: 167–189Google Scholar
  102. Zhou Q., Gibson C. E. and Foy R. H. (2000). Long-term changes of nitrogen and phosphorus loadings to a large lake in north-west Ireland. Water Research 34: 922–926CrossRefGoogle Scholar
  103. Zielinski R. A., Asher-Bolinder S., Meier A. L., Johnson C. A. and Szabo B. J. (1997). Natural or fertilizer-derived uranium in irrigation drainage: a case study in southeastern Colorado, USA. Applied Geochemistry 12: 9–21CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • D. Taylor
    • 1
  • C. Dalton
    • 2
  • M. Leira
    • 3
  • P. Jordan
    • 4
  • G. Chen
    • 2
  • L. León-Vintró
    • 5
  • K. Irvine
    • 1
  • H. Bennion
    • 6
  • T. Nolan
    • 1
  1. 1.School of Natural Sciences, Trinity CollegeUniversity of DublinDublinIreland
  2. 2.Department of GeographyUniversity of LimerickLimerickIreland
  3. 3.Faculty of SciencesUniversity of A CoruñaA CoruñaSpain
  4. 4.School of Environmental SciencesUniversity of UlsterColeraineNorthern Ireland, UK
  5. 5.School of PhysicsUniversity College DublinDublinIreland
  6. 6.Environmental Change Research CentreUniversity College LondonLondonEngland

Personalised recommendations