Advertisement

Hydrobiologia

, Volume 571, Issue 1, pp 133–146 | Cite as

Changes in the distribution and abundance of Dreissena polymorpha within lakes through time

  • Lyubov E. BurlakovaEmail author
  • Alexander Y. Karatayev
  • Dianna K. Padilla
Primary Research Paper

Abstract

Dreissena polymorpha population densities and biomass were followed in three Belarusian lakes with different trophic status over a 12-year period subsequent to initial colonization. In all three lakes zebra mussel population densities did not change once they reached a maximum. Application of the Ramcharan et al. [1992. Canadian Journal of Fisheries and Aquatic Sciences 49: 2611–2620] model for predicting population dynamics of zebra mussels was accurate for two of the three lakes studied. Population density appears to depend on the time since initial colonization, relative abundance of substrate available for colonization, lake morphometry and trophic type. Zebra mussel distribution within lakes was highly patchy, but the degree of dispersion decreased over time after initial colonization, which may be a result of saturation of suitable substrates by zebra mussels as populations increase and reach carrying capacity. In lakes where submerged macrophytes are the dominant substrate for zebra mussel attachment, populations may be less stable than in lakes with a variety of substrates, which will have a more balanced age distribution, and be less impacted by year to year variation in recruitment. Dreissena polymorpha usually reach maximum population density 7–12 years after initial introduction. However, the timing of initial introduction is often very difficult to determine. Both European and North American data suggest that zebra mussels reach maximum density in about 2–3 years after populations are large enough to be detected.

Keywords

zebra mussels Dreissena polymorpha density biomass dynamics substrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burlakova, L. E. 1998. Ecology of Dreissena polymorpha (Pallas) and its role in the structure and function of aquatic ecosystems. Ph.D. Dissertation, Zoology Institute of the Academy of Science, Republic Belarus, Minsk, Belarus (in Russian)Google Scholar
  2. Crooks J. A. and Soulé M. E. (1999). Lag times in population explosions of invasive species: cause and implications. In: Sandlund, O. T., Schei, P. J. and Viken, Å. (eds) Invasive species and biodiversity management, pp 103–125. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  3. Effler S. W. and Siegfried C. (1994). Zebra mussel (Dreissena polymorpha) populations in the Seneca River, New York: impact on oxygen resources. Environmental Science and Technology 28: 2216–2221Google Scholar
  4. Freeman G. H. and Halton J. H. (1951). Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 38: 141–149PubMedCrossRefGoogle Scholar
  5. Horne A. J. and Goldman C. R. (1994). Limnology. McGraw-Hill, Inc, New YorkGoogle Scholar
  6. Gigevich G. S. (1985). Macrophytes. In: Winberg, G. G. (eds) Ecological System of Narochanskie Lakes, pp 116–123. Universitetskoe Press, Minsk (in Russian).Google Scholar
  7. Gromov V. V. (1965). Distribution of Dreissena polymorpha (Pallas) in Kamskoe Reservoir. In: Likharev, I. M. (eds) Molluscs: Problems of Theoretical and Applied Malacology. Abstracts of the Second Meeting on the Investigation of Molluscs, pp 64–66. Nauka Press, Leningrad (in Russian).Google Scholar
  8. Karatayev, A. Y. 1983. Ecology of Dreissena polymorpha Pallas and its effects on macrozoobenthos of a thermal power plant cooling reservoir. Ph.D. Dissertation, Zoology Institute of Academy of Science Belarusian SSR, Minsk, Belarus (in Russian)Google Scholar
  9. Karatayev A. Y., Burlakova L. E. and Padilla D. K (1997). The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. Journal of Shellfish Research 16: 187–203Google Scholar
  10. Karatayev A. Y., Burlakova L. E. and Padilla D. K (1998). Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.). Journal of Shellfish Research 17: 1219–1235Google Scholar
  11. Karatayev A. Y., Burlakova L. E. and Padilla D. K. (2002). Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In: Leppäkoski, E. and Gollasch, S. (eds) Invasive Aquatic Species of Europe – Distribution, Impacts and Management, pp 433–446. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  12. Kiritani K. and Yamamura K. (2003). Exotic insects and their pathways for invasion. In: Ruiz, G. M. and Carlton, J. T. (eds) Invasive Species: Vectors and Management, pp 44–67. Island Press, Washington DCGoogle Scholar
  13. Krebs C. J. (1999). Ecological Methodology. Addison Wesley Longman, Inc, Reading, MA, 212–225Google Scholar
  14. Lewandowski K. (1983). Occurrence and filtration capacity of young plant-dwelling Dreissena polymorpha (Pall.) in Majcz Wielki Lake. Polskie Archiwum Hydrobiologii 39: 255–262Google Scholar
  15. Lvova, A. A., 1980. Ecology of Dreissena (Dreissena polymorpha polymorpha (Pall.). Trudy Vserossijskogo gidrobiologicheskogo obshchestva 23: 101–119 (in Russian) (in Russian).Google Scholar
  16. Lyakhov S. M. and Mikheev V. P. (1964). Distribution and density of Dreissena in the Kuibyshevskoe Reservoir seven years after its construction. Trudy Instituta Biologii Vnutrennikh Vod 7(10): 3–18 (in Russian).Google Scholar
  17. Mack R. N., Simberloff D., Lonsdale W. M., Evans H., Clout M. and Bazzaz F. A. (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710CrossRefGoogle Scholar
  18. Mellina E., Rasmussen J. B. and Mills E. L. (1995). Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Canadian Journal of Fisheries and Aquatic Sciences 52: 2553–2573CrossRefGoogle Scholar
  19. Nalepa, T. F. & D. W. Schloesser (eds), 1993. Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers, Boca Raton, FLGoogle Scholar
  20. Nalepa T. F., Wojcik J. A., Fanslow D. L. and Lang G. A. (1995). Initial colonization of the zebra mussel (Dreissena polymorpha) in Saginaw Bay, Lake Huron: population recruitment, density, and size structure. Journal of Great Lakes Research 21: 417–434Google Scholar
  21. Ostapenya, A. P, A. A. Kovalev, T. M. Mikheeva, V. A. Babitsky, T. V. Zhukova, N. M. Kryuchkova, R. Z. Kovalevskaya, S. B. Kostyukevich, G. A. Inkina, T. A. Makarevich, E. P. Zhukov, V. F. Ikonnikov, A. M. Samusenko, A. F. Orlovsky, A. N. Rachevsky & O. F. Jakushko, 1994a. Ecological Passport of Myastro Lake. Ekomir Press, Minsk (in Russian)Google Scholar
  22. Ostapenya, A. P, A. A. Kovalev, T. M. Mikheeva, V. A. Babitsky, T. V. Zhukova, N. M. Kryuchkova, R. Z. Kovalevskaya, S. B. Kostyukevich, G. A. Inkina, T. A. Makarevich, E. P. Zhukov, V. F. Ikonnikov, A. M. Samusenko, A. F. Orlovsky, A. N. Rachevsky & O. F. Jakushko, 1994b. Ecological Passport of Batorino Lake. Ekomir Press, Minsk (in Russian)Google Scholar
  23. Ostapenya, A. P, A. A. Kovalev, T. V. Zhukova, T. M. Mikheeva, N. M. Kryuchkova, V. A. Babitsky, R. Z. Kovalevskaya, S. B. Kostyukevich, G. A. Inkina, T. A. Makarevich, E. P. Zhukov, V. F. Ikonnikov, A. M. Samusenko, A. F. Orlovsky, A. N. Rachevsky & O. F. Jakushko, 1993. Ecological Passport of Naroch Lake. Ekomir Press, Minsk (in Russian)Google Scholar
  24. Parker I. M., Simberloff D., Lonsdale W. M., Goodell K., Wonham M., Kareiva P. M., Williamson M. H., Moyle P. B., Byers J. E. and Goldwasser L. (1999). Impact: toward a framework for understanding the ecological effect of invaders. Biological Invasions 1: 2–19CrossRefGoogle Scholar
  25. Petrie S. and Knapton R (1999). Rapid increase and subsequent decline of zebra and quagga mussels in Long Point Bay, Lake Erie: possible influence of waterfowl predation. Journal of Great Lakes Research 25: 772–782CrossRefGoogle Scholar
  26. Ramcharan C. W., Padilla D. K. and Dodson S. I. (1992). Models to predict potential occurrence and density of the zebra mussel, Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Sciences 49: 2611–2620CrossRefGoogle Scholar
  27. Ricciardi A., Whoriskey F. G. and Rasmussen J. B. (1997). The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities of hard substrata. Canadian Journal of Fisheries and Aquatic Sciences 54: 2596–2608CrossRefGoogle Scholar
  28. Rice W. R. (1989). Analyzing tables of statistical tests. Evolution 43: 223–225CrossRefGoogle Scholar
  29. Sebestyen O. (1937). Colonization of two new fauna-elements of Pontus-origin (Dreissena polymorpha Pall. and Corophium curvispinum G. O. Sars forma devium Wundsch) in Lake Balaton. Verhandlungen. Internationale Vereinigung fur Theoretische und Angewandte Limnologie 8: 169–182Google Scholar
  30. Simberloff D. and Gibbons L. (2004). Now you see them, now you don’t! – population crashes of established introduced species. Biological Invasions 6: 161–172CrossRefGoogle Scholar
  31. Stanczykowska A. (1975). Ecosystem of Mikolajskie Lake. Regularities of Dreissena polymorpha Pall. (Bivalvia) occurrence and its function in the lake. Polskie. Archiwum Hydrobiologii 22: 73–78Google Scholar
  32. Stanzykowska A. (1978). Occurrence and dynamics of Dreissena polymorpha (Pall.) (Bivalvia). Verhandlungen Internationlen Vereins Limnologie 20: 2431–2434Google Scholar
  33. Stanczykowska A. and Lewandowski K. (1993). Thirty years of studies of Dreissena polymorpha ecology in Mazurian Lakes of Northeastern Poland. In: Nalepa, T. F. and Schloesser, D. W. (eds) Zebra Mussels: Biology, Impacts and Control, pp 3–33. Lewis Publishers, Ann Arbor, MichiganGoogle Scholar
  34. Stoeckel J. A, Padilla D. K., Schneider D. W. and Rehmann C. R (2004). Laboratory culture of Dreissena polymorpha larvae: spawning success, adult fecundity, and larval mortality patterns. Canadian Journal of Zoology 82: 1436–1443CrossRefGoogle Scholar
  35. Strayer D. L., Powell J., Ambrose P., Smith L. C., Pace M. L. and Fischer D. T. (1996). Arrival, spread, and early dynamics of a zebra mussel (Dreissena polymorpha) population in the Hudson River estuary. Canadian Journal of Fisheries and Aquatic Sciences 53: 1143–1149CrossRefGoogle Scholar
  36. Strayer D. L. and Malcom H. M (2006). Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshwater Biology 51: 117–130CrossRefGoogle Scholar
  37. Williamson M. (1996). Biological Invasions. Chapman and Hall, LondonGoogle Scholar
  38. Winberg G. G. (1985). General features of Narochanskie Lakes productivity. In: Winberg, G. G. (eds) Ecological system of Narochanskie Lakes, pp 269–284. Universitetskoe Press, Minsk (in Russian).Google Scholar
  39. Young B. L., Padilla D. K., Schneider D. W. and Hewett S. W. (1996). The importance of size-frequency relationships for predicting ecological impact of zebra mussel populations. Hydrobiologia 332: 151–158CrossRefGoogle Scholar
  40. Zar H. J. 1996. Biostatistical Analysis, (3rd edn.) Prentice HallGoogle Scholar
  41. Zenkevich L. A. (1940). About acclimatization in the Caspian Sea new invertebrates as a food for fishes and theoretical background for this. Bulletin of Moscow Society of Naturalists. Biological series. Moscow 39(1): 18–30 (in Russian).Google Scholar
  42. Zhadin V. I. (1946). The traveling shellfish Dreissena. Priroda 5: 29–37 (in Russian)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Lyubov E. Burlakova
    • 1
    Email author
  • Alexander Y. Karatayev
    • 1
  • Dianna K. Padilla
    • 2
    • 3
  1. 1.Department of BiologyStephen F. Austin State UniversitySFA Station, NacogdochesUSA
  2. 2.Department of Ecology and EvolutionStony Brook UniversityStony BrookUSA
  3. 3.National Center for Ecological Analysis and SynthesisSanta BarbaraUSA

Personalised recommendations