, Volume 568, Issue 1, pp 417–423 | Cite as

The study of antagonistic interactions among pelagic bacteria: a promising way to coin environmental friendly antifouling compounds

  • Hari Datta Bhattarai
  • Yoo Kyung Lee
  • Kyeung Hee Cho
  • Hong Kum Lee
  • Hyun Woung ShinEmail author
Primary Research Paper


Ten strains of marine bacteria (SCH0401–SCH0410) were isolated from Ayajin, the east coast of South Korea. In spectrophotometer based chemotaxis assay the ethyl acetate extract (300 μg) of SCH0402 decreased the optical density (OD) of the motile target strains SCH0401, SCH0402, SCH0407 and SCH0408 by two to six times when compared to control. Tributyltin oxide (TBTO) decreased the OD of all target strains by only two times. The most active strain SCH0402 was identified as Shewanella oneidensis by using 16S rDNA gene sequence analysis. Similarly, the target motile strains SCH0401, SCH0402, SCH0407 and SCH0408 were identified as Alteromonas marina, Shewanella oneidensis, Roseobacter gallaeciensis and Bacillus atrophaeus, respectively. The growth inhibition zone produced by the test bacterial extracts against the target strains were three to eight times smaller when compared to that of TBTO. Even though, SCH0402 showed six times weaker antibacterial activity, the repellent activity was three times stronger than TBTO. Therefore, the higher negative chemotactic activity would be better to select eco-friendly antifouling compounds than the other antibacterial activities.


Alteromonas marina bacterial repellent biofilm secondary metabolites Shewanella oneidensis 16S rDNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguirre A. A., Balazas G. H., Zimmerman B. and Spraker T. R. (1994). Evaluation of Hawaiian green turtles (Chelonia mydas) for potential pathogens associated with fibropapillomas. Journal of Wildlife Diseases 30: 8–15PubMedGoogle Scholar
  2. Alzieu C. (1998). Tributyltin: case study of a chronic contaminant in the coastal environment. Ocean and Coastal Management 40: 23–26CrossRefGoogle Scholar
  3. Armstrong E., Yan L., Boyd K. G., Wright P. C. and Burgess J. G. (2001). The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37–40CrossRefGoogle Scholar
  4. Bizani D. and Brandelli A. (2002). Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. Journal of Applied Microbiology 93: 512–519PubMedCrossRefGoogle Scholar
  5. Boyd K. G., Mearns-Spragg A. and Burgess J. G. (1999). Screening of marine bacteria for the production of microbial repellents using a spectrophotometric chemotaxis assay. Marine Biotechnology 1: 359–363PubMedCrossRefGoogle Scholar
  6. Burgess J. G., Jordan E. M., Bregu M., Mearns-Spragg A. and Boyd K. G. (1999). Microbial antagonism: a neglected avenue of natural product research. Journal of Biotechnology 70: 27–32PubMedCrossRefGoogle Scholar
  7. Chet I. and Mitchel R. (1976). Ecological aspects of microbial chemotactic behavior. Annual Review of Microbiology 30: 221–239PubMedCrossRefGoogle Scholar
  8. Chun J. 1995. Computer-assisted classification and identification of Actinomycetes. Ph.D. Thesis, University of Newcastle, Newcastle upon Tyne, UKGoogle Scholar
  9. Egan S., Thomas T., Holmström C. and Kjelleberg S. (2000). Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environmental Microbiology 2: 343–347PubMedCrossRefGoogle Scholar
  10. Felsenstein J. (1993). PHYLIP (Phylogeny Inference Package), version 3.5c. Department of Genetics, University of Washington, Seattle, WA, USAGoogle Scholar
  11. Giovannoni S. and Rappé M. (2000). Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman, D.L. (eds) Microbial ecology of the ocean, pp 47–84. Wiley-Liss, New YorkGoogle Scholar
  12. Giovannoni S. J. (1991). The polymerase chain reaction. In: Stackebrandt, E. and Goodfellow, M. (eds) Nucleic Acid Techniques in Bacterial Systematic, pp 177–201. John Wiley & Sons, New YorkGoogle Scholar
  13. Holmström C., Egan S., Franks A., McCloy S. and Kjelleberg S. (2002). Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiology Ecology 41: 47–58CrossRefPubMedGoogle Scholar
  14. Ista L. K., Callow M. E., Finlay J. A., Coleman S. E., Nolasco A. C., Simons R. H., Callow J. A. and Lopez G. P. (2004). Effects of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Applied and Environmental Microbiology 70: 4151–4157PubMedCrossRefGoogle Scholar
  15. James S. G., Hölmstrom C. and Kjelleberg S. (1996). Purification and characterization of novel antibacterial protein from the marine bacterium D2. Applied and Environmental Microbiology 62: 2783–2755PubMedGoogle Scholar
  16. Kiφrboe T. and Jackson G. A. (2001). Marine snow, organic solute plumes and optimal chemosensory behavior of bacteria. Limnology and Oceanography 46: 1309–1318CrossRefGoogle Scholar
  17. Kiφrboe T., Grossart H. P., Ploug H. and Tang K. (2002). Mechanisms and rates of bacterial colonization of sinking aggregates. Applied and Environmental Microbiology 68: 3996–4006CrossRefGoogle Scholar
  18. Kwon K. K, Lee H. S., Jung S. Y., Yim J. H., Lee J. H. and Lee H. K. (2002). Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho Dike, Korea. Journal of Microbiology and Biotechnology 40: 260–266Google Scholar
  19. Lau S. C., Harder T. and Qian P. Y. (2003). Induction of larval settlement in the serpulid polychaete Hydroides elegans (Haswell): role of bacterial extracellular polymers. Biofouling 19: 197–204PubMedCrossRefGoogle Scholar
  20. Lewis J. A. (1998). Marine biofouling and its prevention on underwater surface. Material Forum 22: 41–46Google Scholar
  21. Long R. A. and Azam F. (2001). Antagonistic interactions among marine pelagic bacteria. Applied and Environmental Microbiology 67: 4975–4983PubMedCrossRefGoogle Scholar
  22. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P. and Iglewski B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 96: 11229–11234PubMedCrossRefGoogle Scholar
  23. Petrovskis E. A., Vogel T. M. and Adriaens P. (1994). Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-1. FEMS Microbiology Letters 121: 357–364 PubMedCrossRefGoogle Scholar
  24. Saitou N. and Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425PubMedGoogle Scholar
  25. Satuito C. G., Shimizu K. and Fusetani N. (1997). Studies on the factors influencing larval settlement in Balanus amphitrite and Mytilus galoprovinvialis. Hydrobiologia 358: 275–280CrossRefGoogle Scholar
  26. Shewan, J. M., 1977. The bacteriology of fresh and spoiling fish and the biochemical changes induced by bacterial action. In Proceedings of the Conference of Handling, Processing and Marketing of Tropical Fish, Tropical Product Institute, London, 51–66Google Scholar
  27. Thompson J. D., Higgins D. G. and Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680PubMedGoogle Scholar
  28. Venkateswaran K., Moser D. P., Dolhopf M. E., Lies D. P., Saffarini D. A., MacGregor B. J., Ringelberg D. B., White D. C., Nishijima M., Sano H., Burghardt J., Stackebrandt E. and Nealson K. H. (1999). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. International Journal of Systematic Bacteriology 49: 705–724PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Hari Datta Bhattarai
    • 1
  • Yoo Kyung Lee
    • 2
  • Kyeung Hee Cho
    • 2
  • Hong Kum Lee
    • 2
  • Hyun Woung Shin
    • 1
    Email author
  1. 1.Department of Marine BiotechnologySoonchunhyang UniversityAsan-SiSouth Korea
  2. 2.Polar BioCenterKorea Polar Research Institute, KORDISeoulKorea

Personalised recommendations