Hydrobiologia

, Volume 568, Issue 1, pp 403–416 | Cite as

Freeze tolerance in larvae of the winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae): a contrast to adult strategy for survival at low temperatures

  • R. W. BouchardJr.
  • M. A. Carrillo
  • S. A. Kells
  • L. C. FerringtonJr.
Primary Research Paper

Abstract

The winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae) is freeze intolerant in the adult stage with a low mean supercooling point (SCP) of ~−20 °C. However, cold-hardiness strategies for immatures of this species are unknown. In this study, we measured SCP values for D. mendotae larvae, pupae and adults using surface-contact thermometry. In addition, the lower lethal temperature (LLT) was determined for the larval stage. The mean SCPs for larvae (−7.4 °C) and pupae (−9.1 °C) were relatively high compared to adults (−19.7 °C). Our results indicate that the larvae of D. mendotae are freeze tolerant with a LLT99 (−25.4 °C), ~−10 °C lower than their minimum SCP (−15.6 °C). Freeze tolerance in these larvae may be a strategy to provide protection from short-term exposures to ice crystals or to permit diapause within frozen substrates. The change in cold-hardiness strategy from freeze tolerant to freeze intolerant between the larval and adult stages of this species is likely a result of the different habitats occupied by these two life stages.

Keywords

supercooling point lower lethal temperature cold hardiness lotic winter activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267Google Scholar
  2. Adler P. H., Currie D. C. and Wood D. M. (2004). The black flies (Simuliidae) of North America. Cornell University Press, IthacaGoogle Scholar
  3. Andrews D. and Rigler F. H. (1985). The effects of and Arctic winter on benthic invertebrates in the littoral zone of Char Lake, Northwest Territories. Canadian Journal of Zoology 63: 2825–2834CrossRefGoogle Scholar
  4. Ashton G. D. (1979). River ice. American Scientist 67: 38–45Google Scholar
  5. Bale J. S. (1989). Cold hardiness and overwintering of insects. Agricultural Zoology Reviews 3: 157–192Google Scholar
  6. Bale J. S. (1991). Implications of cold hardiness for pest management. In: Denlinger, D. L. (eds) Insects at Low Temperature, pp 461–498. Chapman & Hall, New YorkGoogle Scholar
  7. Baust J. G. and Edwards J. S. (1979). Mechanisms of freezing tolerance in an Antarctic midge, Belgica antarctica. Physiological Entomology 4: 1–5Google Scholar
  8. Baust J. G. and Lee R. E. (1981). Environmental “homeothermy” in an Antarctic insect. Antarctic Journal of the United States 15: 170–172Google Scholar
  9. Baust J. G. and Rojas R. R. (1985). Review - insect cold hardiness: facts and fancy. Journal of Insect Physiology 31: 755–759CrossRefGoogle Scholar
  10. Berg M. B. and Hellenthal R. A. (1991). Secondary production of Chironomidae (Diptera) in a north temperate stream. Freshwater Biology 25: 497–505CrossRefGoogle Scholar
  11. Block W (1991). To freeze or not to freeze? invertebrate survival of sub-zero temperatures. Functional Ecology 5: 284–290CrossRefGoogle Scholar
  12. Block W., Erzinclioglu Y. Z. and Worland M. R. (1988). Survival of freezing in Calliphora larvae. CryoLetters 9: 86–93Google Scholar
  13. Carrillo M. A. (2006). Lower lethal temperature for adult male Diamesa mendotae Muttkowski (Diptera: Chironomidae), a winter-emerging Diamesinae. Aquatic Insects 28: 57–66CrossRefGoogle Scholar
  14. Brundin L. (1966). Transantarctic relationships and their significance, as evidenced by chironomid midges with a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. Kunglica Svenska Vetenskapsakademiens Handlingar 11: 1–472Google Scholar
  15. Carrillo M. A. and Cannon C. A. (2004a). Effect of sex and age on the supercooling point of the winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae). Aquatic Insects 26: 243–251CrossRefGoogle Scholar
  16. Carrillo M. A., Kaliyan N., Cannon C. A., Morey R. V. and Wilcke W.␣F. (2004b). A simple method to adjust cooling rates for supercooling point determination. CryoLetters 25: 155–160Google Scholar
  17. Carrillo M. A., Cannon C. A., Wilcke W. F., Morey R. V. and Hutchison W. D. (2005a). Relationship between supercooling point and mortality at low temperatures in Indianmeal moth (Lepidoptera: Pyralidae). Journal of Economic Entomology 98: 618–625Google Scholar
  18. Carrillo M. A., Heimpel G. E., Moon R. D., Cannon C. A. and Hutchison W. D. (2005b). Cold hardiness of Habrobracon hebetor (Say) (Hymenoptera: Braconidae), a parasitoid of pyralid moths. Journal of Insect Physiology 51: 759–768CrossRefGoogle Scholar
  19. Danks H. V. (1971). Overwintering of some north temperate and arctic Chironomidae. The Canadian Entomologist 103: 1875–1910CrossRefGoogle Scholar
  20. Frisbie M. P. (1997). Inoculative freezing and the problem of winter survival for freshwater macroinvertebrates. Journal of the North American Benthological Society 16: 635–650CrossRefGoogle Scholar
  21. Miller L. K. and Oswood M. W. (1993). Ecological adaptations of aquatic macroinvertebrates to overwintering in interior Alaska (U.S.A.) subarctic streams. Canadian Journal of Zoology 71: 98–108CrossRefGoogle Scholar
  22. Koch R. L., Carrillo M. A., Venette R. C., Cannon C. A. and Hutchison W. D. (2004). Cold hardiness of the multicolored Asian lady beetle (Coleoptera: Coccinellidae). Environmental Entomology 33: 815–822CrossRefGoogle Scholar
  23. Kohshima S. (1984). A novel cold-tolerant insect found in a Himalayan glacier. Nature 310: 225–227CrossRefGoogle Scholar
  24. Langton P. H. (1995). Chap 8: The pupa and events leading to eclosion. In: Armitage, P. D., Cranston, P. S. and Pinder, L. C. V. (eds) The Chironomidae: Biology and Ecology of Non-biting Midges, pp 169–193. Chapman & Hall, LondonGoogle Scholar
  25. Leather S. R., Walters K. F. A and Bale J. S. (1993). The Ecology of Insect Overwintering. Cambridge University Press, CambridgeGoogle Scholar
  26. (1989). Insect cold-hardiness: to freeze or not to freeze. BioScience 39: 308–313 CrossRefGoogle Scholar
  27. (1991). Principles of insect low temperature tolerance. In: Denlinger, D. L. (eds) Insects at Low Temperature, pp 17–46. Chapman & Hall, New YorkGoogle Scholar
  28. Lencioni V. (2004). Survival strategies of freshwater insects in cold environments. Journal of Limnology 63: 45–55Google Scholar
  29. MacAnova, 2002. MacAnova for Windows, version 4.12. University of Minnesota, School of Statistics. Available online at: http://www.stat.umn.edu/macanova/download.htmlGoogle Scholar
  30. Moore M. V. (1991). Surviving the big chill: overwintering strategies of aquatic and terrestrial insects. American Entomologist 37: 111–118Google Scholar
  31. Nolte U. and Hoffman T. (1992). Fast life in cold water: Diamesa incallida (Chironomidae). Ecography 15: 25–30CrossRefGoogle Scholar
  32. Olsson T. I. (1981). Overwintering of benthic macroinvertebrates in ice and frozen sediment in a North Swedish river. Holarctic Ecology 4: 161–166Google Scholar
  33. Oswood M. W. and Miller L. K. (1991). Overwintering of freshwater benthic macroinvertebrates. In: Denlinger, D. L. (eds) Insects at Low Temperature, pp 360–375. Chapman & Hall, New YorkGoogle Scholar
  34. Ring R. A. (1989). Intertidal Chironomidae of B.C., Canada. Acta Biologica Debrecen Oecologica Hungarica 3: 275–288Google Scholar
  35. Salt R. W. (1953). The influence of food on cold hardiness of insects. The Canadian Entomologist 85: 261–269CrossRefGoogle Scholar
  36. Salt R. W. (1961). Principles of insect cold-hardiness. Annual Review of Entomology 6: 55–74CrossRefGoogle Scholar
  37. (1998). Statistical Analysis System, version 6.12. SAS Institute, CaryGoogle Scholar
  38. Scholander P. F., Flagg W., Hock R. J. and Irving L. (1953). Studies on the physiology of frozen plants and animals in the arctic. Journal of Cellular Comparative Physiology 41: 1–56CrossRefGoogle Scholar
  39. (2001). SigmaPlot 2001 for Windows, version 7.0. SPSS Inc, ChicagoGoogle Scholar
  40. Sinclair B. J. (1999). Insect cold tolerance: how many kinds of frozen?. European Journal of Entomology 96: 157–164Google Scholar
  41. Sømme L. and Østbye E. (1969). Cold-hardiness in some winter active insects. Norsk Entomologisk Tidsskrift 16: 45–48Google Scholar
  42. Sømme L. (1982). Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry and Physiology A: Physiology 73: 519–543CrossRefGoogle Scholar
  43. Southwood T. R. E. and Henderson P. A. (2000). Ecological Methods. Blackwell Ltd, Oxford Google Scholar
  44. Storey K. B. and Storey J. M. (1997). To freeze or not to freeze - the dilemma for life below 0 °C. The Biochemist 19: 8–13Google Scholar
  45. Wülker W. and Götz P. (1968). Die Verwendung der Imaginalscheiben zur Bestimmung des Entwicklungszustandes von Chironomus-Larven (Dipt.). Zeitschrift für Morphologie der Tiere 62: 363–388CrossRefGoogle Scholar
  46. Young R. M. (1969). Field observations on a midwinter breeding flight of Diamesa arctica (Diptera: Chironomidae). Annals of the Entomological Society of America 6: 1204Google Scholar
  47. Zachariassen K. E. (1985). Physiology of cold tolerance in insects. Physiological Reviews 65: 799–832PubMedGoogle Scholar
  48. Zachariassen K. E. and Kristiansen E. (2000). Ice nucleation and antinucleation in nature. Cryobiology 41: 257–279PubMedCrossRefGoogle Scholar
  49. Zachariassen K. E., Kristiansen E. and Pedersen S. A. (2004). Inorganic ions in cold-hardiness. Cryobiology 48: 126–133PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • R. W. BouchardJr.
    • 1
  • M. A. Carrillo
    • 1
  • S. A. Kells
    • 1
  • L. C. FerringtonJr.
    • 1
  1. 1.Department of EntomologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations