Hydrobiologia

, Volume 568, Issue 1, pp 145–157 | Cite as

The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate Lake

  • Daniela R. de Figueiredo
  • Ana S. S. P. Reboleira
  • Sara C. Antunes
  • Nelson Abrantes
  • Ulisses Azeiteiro
  • Fernando Gonçalves
  • Mário J. Pereira
Primary Research Paper

Abstract

The increasing occurrence of cyanobacterial blooms in freshwaters is of great concern due to the ability of many cyanobacteria to produce cyanotoxins. In the present work, the eutrophied Vela Lake (Central Portugal), used for recreational purposes and as a water source for agriculture, was monitored every fortnight between 2000 and 2001. Phytoplankton diversity and densities were measured and correlated to environmental parameters. A seasonal phytoplanktonic succession was observed and it was mainly correlated with conductivity, temperature, total suspended solids and nutrients availability (particularly phosphorus). Diatoms were dominant during winter months (inferior temperatures and higher nutrients availability) followed by green algae in early spring and then cyanobacteria from late spring until early autumn (less nutrient availability and higher temperatures). A massive cyanobacterial bloom of Aphanizomenon flos-aquae occurred early in May 2001 and was preceded by the lowest nitrogen levels measured in the water during all the study period. At the time of this bloom senescence, dissolved oxygen was severely depleted and a massive death of ichthyofauna was recorded. A Microcystis aeruginosa bloom was also detected in July 2001 and it occurred following a rapid decrease in abundance of green algae and diatoms. By considering not only the environmental parameters but also the occurrence of cyanobacterial blooms as explanatory variables in a canonical correspondence analysis, the variance explained for the phytoplanktonic assemblage during the study period was increased in about 7% achieving a total of 61.0%, indicating a correlation that may be due to the known competitive advantage and/or allelopathy of the bloom-forming cyanobacteria towards microalgae.

Keywords

eutrophic lake phytoplankton dynamics environmental parameters Aphanizomenon flos-aquae Microcystis aeruginosa multivariate analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antunes S. C., Abrantes N. and Gonçalves F. (2003). Seasonal variation of the abiotic parameters and the cladoceran assemblage of Lake Vela: comparison with previous studies. Annales de Limnologie, International Journal of Limnology 39: 255–264 CrossRefGoogle Scholar
  2. APHA (1992). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DCGoogle Scholar
  3. Chellappa N. T. and Costa M. A. (2003). Dominant and co-existing species of cyanobacteria from an eutrophicated reservoir of Rio Grande do Norte State, Brazil. Acta Oecologica 24: S3–S10CrossRefGoogle Scholar
  4. Chorus, I. & J. Bartram (eds), 1999. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and management. E&FN Spon, LondonGoogle Scholar
  5. Codd G. A. (2000). Cyanobacterial toxins, the perception of water quality and the priorisation of eutrophication control. Ecological Engineering 16: 51–60CrossRefGoogle Scholar
  6. de Figueiredo D. R., Azeiteiro U. M., Esteves S. M., Gonçalves F. J. M. and Pereira M. J. (2004a). Microcystin producing blooms – a serious global public health issue. Ecotoxicology and Environmental Safety 59: 151–163CrossRefGoogle Scholar
  7. de Figueiredo D. R., Azeiteiro U. M., Gonçalves F. J. M. and Pereira M. J. (2004b). Aphanizomenon flos-aquae grown under different nutrient concentrations and its effects over two green algae. Fresenius Environmental Bulletin 13: 657–664Google Scholar
  8. de Figueiredo D. R., Antunes S. C., Pereira M. J. and Gonçalves F. J. M. (2004c). Chronic effects of Aphanizomenon flos-aquae on the survival and reproduction of dapnhids. Fresenius Environmental Bulletin 13: 665–670Google Scholar
  9. Dokulil M. T. and Teubner K. (2000). Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12CrossRefGoogle Scholar
  10. Eynard F., Mez K. and Walther J. -L. (2000). Risk of cyanobacterial toxins in Riga waters. Water Research 34: 2979–2988CrossRefGoogle Scholar
  11. Ferrão-Filho A. S. and Azevedo S. M. F. O. (2003). Effects of unicellular and colonial forms of toxic Microcystis aeruginosa from laboratory cultures and natural populations on tropical cladocerans. Aquatic Ecology 37: 23–35CrossRefGoogle Scholar
  12. Ferreira F. M. B., Soler J. M. F., Fidalgo M. L. and Fernández-Vila P. (2001). PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-Lever reservoir (Douro river, northern Portugal). Toxicon 39: 757–761PubMedCrossRefGoogle Scholar
  13. Geitler L. (1932). Cyanophyceae. In: Rabenhorst`s, L. (eds) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, band 14, pp. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  14. Germain, H., 1981. Flore des diatomées. Diatomophycées d’eaux douces et saumâtres du Massif Armoricain et des contrées voisines de l’Europe occidentale. Boubée Éditions, ParisGoogle Scholar
  15. Jacoby J. M., Collier D. C., Welch E. B. and Hardy F. J. (2000). Environmental factors associated with a toxic bloom of Microcystis aeruginosa. Canadian Journal of Fisheries and Aquatic Sciences 57: 231–240CrossRefGoogle Scholar
  16. Kearns K. D. and Hunter M. D. (2001). Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microbial Ecology 42: 80–86PubMedGoogle Scholar
  17. Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification system of cyanophytes – 4 – Nostocales. Archives of Hydrobiology (Supplement 82): 247–345Google Scholar
  18. Komárek J. and Anagnostidis K. (1999). Cyanoprokariota – 1. Teil Choococcales. In: Ettl, H., Gärtner, G., Heynig, H. and Mollenhauer, D. (eds) Süβwasserflora von Mitteleuropa, Band 19/1, pp. G. Fischer Verlag, Jena, Stuttgart, Lübeck, UlmGoogle Scholar
  19. Komárek, J. & B. Fott, 1983. Das Phytoplankton des Süsswassers, Systematik und Biologie. 7. Teil, 1. Hälfte, Chlorophyceae (Grünalgen). Ordnung: Chlorococcales. Scweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  20. Krammer K. and Lange-Bertalot H. (1986–1991). Bacillariophyceae. In: Ettl, H., Gärtner, G., Heynig, H. and Mollenhauer, D. (eds) Süβwasserflora von Mitteleuropa, Vol. 2, pp. G. Fischer Verlag, StuttgartGoogle Scholar
  21. Lange-Bertalot H. (2001). Navicula sensu stricto, 10 genera separated from Navicula sensu stricto, Frustulia. In: Lange-Bertalot, H. (eds) Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats, Vol. 2, pp. A.R.G. Gantner Verlag K.G, RuggellGoogle Scholar
  22. Lind O. T. (1979). Handbook of Common Methods in Limnology. C.V. Mosby Company, St. LouisGoogle Scholar
  23. Lotocka M. (2001). Toxic effect of cyanobacterial blooms on the grazing activity of Daphnia magna Straus. Oceanologia 43(4): 441–453Google Scholar
  24. Lund J. W. G., Kipling C. and Le Cren E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by couting. Hydrobiologia 11: 143–170CrossRefGoogle Scholar
  25. Mischke U. (2003). Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecologica 24: S11–S23CrossRefGoogle Scholar
  26. Oliver R. L. and Ganf G. G. (2000). Freshwater blooms. In: Whitton, B. A. and Potts, M. (eds) The Ecology of Cyanobacteria, pp 149–194. Kluwer Academic PublishersGoogle Scholar
  27. Pouria S., de Andrade J., Barbosa J., Cavalcanti R. L., Barreto V. T. S., Ward C. J., Preiser W., Poon G. K., Neild G. H. and Codd G. A. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet 352: 21–26CrossRefGoogle Scholar
  28. Pereira P., Onodera H., Andrinolo D., Franca S., Araújo F., Lagos N. and Oshima Y. (2000). Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon 38(12): 1689–1702PubMedCrossRefGoogle Scholar
  29. Silva P. C. L. D., Gonçalves F., Ribeiro R. and Soares A. M. V. M. (1997). First evaluation of the restoration of Braças Lagoon (Figueira da Foz – Portugal). Archives of Hydrobiology 141: 109–125Google Scholar
  30. Singh D. P., Tyagi M. B., Kumar A., Thakur J. K. and Kumar A. (2001). Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa. World Journal of Microbiology, Biotechnology 17: 15–22CrossRefGoogle Scholar
  31. Suikkanen S., Fistarol G. O. and Granéli E. (2004). Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology 308: 85–101CrossRefGoogle Scholar
  32. ter Braak C. F. J. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179CrossRefGoogle Scholar
  33. ter Braak C. F. J. (1995). Ordination. In: Jongman, R. H. G. (eds) Data Analysis in Community and Landscape Ecology, pp 91–173. Cambridge University Press, CambridgeGoogle Scholar
  34. Teubner K., Feyerabend R., Henning M., Nicklisch A., Woitke P. and Kohl J. -G. (1999). Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen:phosphorus ratio in hypertrophic riverine lakes. Archives of Hydrobiology, Special Issues of Advanced Limnology 54: 325–344Google Scholar
  35. Vasconcelos V. M. (1999). Cyanobacteria toxins in Portugal: effects on aquatic animals and risk for human health. Brazilian Journal of Medical and Biological Research 32: 249–254PubMedCrossRefGoogle Scholar
  36. Vasconcelos V. M. (2001). Freshwater cyanobacteria and their toxins in Portugal. In: Chorus, I. (eds) Cyanotoxins – Occurrence, Causes, Consequences, pp 62–67. Springer, BerlinGoogle Scholar
  37. Vasconcelos V. M., Campos T., Amorim A. and Soares A. M. V. M. (1993). Toxicidade de estirpes de cianobactérias isoladas a partir das lagoas das Braça, Vela e Mira. Bol. UCA U Algarve UCTRA 1: 193–201Google Scholar
  38. WHO, 2003. Algae and cyanobacteria in fresh water. In: Guidelines for Safe Recreational Water Environments. Vol. I: Coastal and Fresh Waters. World Health Organization, Geneva, 136–158Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Daniela R. de Figueiredo
    • 1
  • Ana S. S. P. Reboleira
    • 1
  • Sara C. Antunes
    • 1
  • Nelson Abrantes
    • 1
  • Ulisses Azeiteiro
    • 2
  • Fernando Gonçalves
    • 1
  • Mário J. Pereira
    • 1
  1. 1.Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.IMAR – Institute of Marine ResearchUniversidade de CoimbraCoimbraPortugal

Personalised recommendations