Hydrobiologia

, Volume 569, Issue 1, pp 531–544 | Cite as

A synthesis of long-term research by the Florida Coastal Everglades LTER Program

Abstract

This paper synthesizes research conducted dusring the first 5–6 years of the Florida Coastal Everglades Long-Term Ecological Research Program (FCE LTER). My objectives are to review our research to date, and to present a new central theme and conceptual approach for future research. Our research has focused on understanding how dissolved organic matter (DOM) from upstream oligotrophic marshes interacted with a marine source of the limiting nutrient, phosphorus (P), to control productivity in the oligohaline estuarine ecotone. We have been working along freshwater to marine transects in two drainage basins located in Everglades National Park (ENP). The Shark River Slough transect (SRS) has a direct connection to the Gulf of Mexico, providing this estuarine ecotone with a source of marine P. The oligohaline ecotone along our southern Everglades transect (TS/Ph), however, is separated from this marine P source by the Florida Bay estuary. We originally hypothesized an ecosystem productivity peak in the SRS ecotone, driven by the interaction of marine P and Everglades DOM, but no such productivity peak in the TS/Ph ecotone because of this lack of marine P. Our research to date has tended to show the opposite pattern, however, with many ecosystem components showing enhanced productivity in the TS/Ph ecotone, but not in the SRS ecotone. Water column P concentrations followed a similar pattern, with unexpectedly high P in the TS/Ph ecotone during the dry season. Our organic geochemical research has shown that Everglades DOM is more refractory than originally hypothesized. We have also begun to understand the importance of detrital organic matter production and transport to ecotone dynamics and as the base of aquatic food webs. Our future research will build on this substantial body of knowledge about these oligotrophic estuaries. We will direct our efforts more strongly on biophysical dynamics in the oligohaline ecotone regions. Specifically, we will be focusing on inputs to these regions from four primary water sources: freshwater Everglades runoff, net precipitation, marine inputs, and groundwater. We are hypothesizing that dry season groundwater inputs of P will be particularly important to TS/Ph ecotone dynamics because of longer water residence times in this area. Our organic geochemical, biogeochemical, and ecosystem energetics work will focus more strongly on the importance of detrital organics and will take advantage of a key Everglades Restoration project, scheduled for 2008 or 2009, that will increase freshwater inputs to our SRS transect only. Finally, we will also begin to investigate the human dimensions of restoration, and of a growing population in south Florida that will become increasingly dependent on the Everglades for critical ecosystem services (including fresh water) even as its growth presents challenges to Everglades sustainability.

Keywords

Everglades LTER synthesis estuary oligohaline oligotrophic ecosystem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armentano, T. V., J. P. Sah, M. S. Ross, D. T. Jones, H. C. Cooley & C. S. Smith, 2006. Rapid responses of vegetation to hydrological changes in Taylor Slough, Everglades National Park, Florida, USA. Hydrobiologia 569: 293–309Google Scholar
  2. Armitage, A. R., Frankovich, T. A., Heck, K. L.,Jr., Fourqurean, J. W. 2005Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida BayEstuaries28422434CrossRefGoogle Scholar
  3. Armitage, A. R., Frankovich, T. A., Fourqurean, J. W. 2006Variable responses within epiphytic and benthic microalgal communities to nutrient enrichmentHydrobiologia569423435Google Scholar
  4. Cardona-Olarte, P., Twilley, R. R, Krauss, K. W., Riverva-Monroy, V. 2006Responses of neotropical mangrove seedlings grown in mono and mixed cultures under treatments of hydroperiod and salinityHydrobiologia569325341Google Scholar
  5. Chambers, R. M., Pederson, K. A. 2006Variation in soil phosphorus, sulfur, and iron pools among south Florida wetlandsHydrobiologia 569 6370Google Scholar
  6. Chen, R. & R. R. Twilley, 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, Florida. EstuariesGoogle Scholar
  7. Childers, D. L., Doren, R. F., Jones, R., Noe, G. B., Rugge, M., Scinto, L. J. 2003Decadal change in vegetation and soil phosphorus patterns across the Everglades landscapeJournal of Environmental Quality32344362PubMedCrossRefGoogle Scholar
  8. Childers, D. L., Boyer, J. N., Davis, S. E., Madden, C. J., Rudnick, D. T., Sklar, F. H. 2006Nutrient concentration patterns in the oligotrophic “upside down” estuaries of the Florida EvergladesLimnology and Oceanography51602616CrossRefGoogle Scholar
  9. Childers, D. L., D. Iwaniec, D. Rondeau, G. Rubio, E. Verdon & C. J. Madden, 2006. Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshes. Hydrobiologia 569: 273–292Google Scholar
  10. Davis, S. E., Coronado-Molina, C., Childers, D. L., Day, J. W. 2003Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern EvergladesAquatic Botany75199215CrossRefGoogle Scholar
  11. Davis, S. E., Cable, J. E., Childers, D. L., Coronado-Molina, C., Day, J. W., Hittle, C. D., Madden, C. J., Rudnick, D., Reyes, E., Sklar, F. 2004Importance of episodic storm events in controlling ecosystem structure and function in a Gulf Coast EstuaryJournal of Coastal Research2011981208CrossRefGoogle Scholar
  12. Davis, S. E.,III, Childers, D. L., Noe, G. B. 2006The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetationHydrobiologia5698797Google Scholar
  13. Dorn, N. J., Trexler, J. C., Gaiser, E. E. 2006Exploring the role of large predators in marsh food webs: evidence for a behaviorally-mediated trophic cascadeHydrobiologia569375386Google Scholar
  14. Ewe, S. M. L., E. E. Gaiser, D. L. Childers, D. Iwaniec, V. H. Rivera-Monroy & R. R. Twilley, 2006. Spatial and temporal patterns of aboveground net primary production (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569: 459–474Google Scholar
  15. Fourqurean, J. W., Zieman, J. C., Powell, G. V. N. 1992Phosphorus limitation of primary production in Florida Bay: evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinumLimnology and Oceanography37162171CrossRefGoogle Scholar
  16. Fourqurean, J. W., Schrlau, J. 2003Changes in nutrient content and stable isotope ratios of C and N during decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida Bay, USAChemistry and Ecology19373390CrossRefGoogle Scholar
  17. Frankovich, T. A., Gaiser, E. E., Zieman, J. C., Wachnicka, A. H. 2006Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex König: relationships to water qualityHydrobiologia569259271Google Scholar
  18. Gaiser, E. E., Trexler, J. C., Richards, J. H., Childers, D. L., Lee, D., Edwards, A. L., Scinto, L. J., Jayachandran, K., Noe, G. B., Jones, R. D. 2005Cascading ecological effects of low-level phosphorus enrichment in the Florida EvergladesJournal of Environmental Quality34717723PubMedGoogle Scholar
  19. Gaiser, E. E., Zafiris, A., Ruiz, P. L., Tobias, F. A. C., Ross, M. S. 2006Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal South FloridaHydrobiologia569237257Google Scholar
  20. Gil, M., Armitage, A. R., Fourqurean, J. W. 2006Nutrient impacts on epifaunal density and species composition in a subtropical seagrass bedHydrobiologia569437447Google Scholar
  21. Green, D. P. J., Trexler, J. C., Lorenz, J. J., McIvor, C. C., Philippi, T. 2006Spatial patterns of fish communities along two estuarine gradients in southern FloridaHydrobiologia569387399Google Scholar
  22. Hajje, N., Jaffé, R. 2006Molecular characterization of Cladium peat from Florida Everglades: biomarker associations with humic fractionsHydrobiologia56999112Google Scholar
  23. Iwaniec, D. M, Childers, D. L., Rondeau, D., Madden, C. J., Saunders, C. 2006Effects of hydrologic and water quality drivers on priphyton dynamics in the southern EvergladesHydrobiologia569 223235Google Scholar
  24. Jaffe, R., Mead, R., Hernandez, M. E., Peralba, M. C., DiGuida, O. A. 2001Origin and transport of sedimentary organic matter in two subtropical estuaries: A comparative, biomarker-based studyOrganic Geochemistry32507526CrossRefGoogle Scholar
  25. Jaffe, R., Boyer, J. N., Lu, X., Maie, N., Yang, C., Scully, N. M., Mock, S. 2004Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysisMarine Chemistry84195210CrossRefGoogle Scholar
  26. Jones, V., Ruddell, C. J., Wainwright, G., Rees, H. H., Jaffe, R., Wolff, G. A. 2004One-dimensional and two dimensional polyacrylamide gel electrophoresis: a tool for protein characterization in aquatic samplesMarine Chemistry856373CrossRefGoogle Scholar
  27. Jones, V., Collins, M. J., Penkman, K. E. H., Jaffe, R., Wolff, G. A. 2005An assessment of the microbial contribution to aquatic dissolved organic nitrogen using amino acid enantiomeric ratiosOrganic Geochemistry3610991107CrossRefGoogle Scholar
  28. Jones, V., Parish, K., Thomson, A., Wolff, G. A., Maie, N., Jaffé, R. 2006Molecular characterization of proteinaceous material in the Florida coastal EvergladesHydrobiologia 569129133Google Scholar
  29. Krauss, K. W., Doyle, T. W., Twilley, R. R., Rivera-Monroy, V. H., Sullivan, J. K. 2006Evaluating the relative contributions of hydroperiod and soil fertility as growth of south Florida mangrovesHydrobiologia569311324Google Scholar
  30. Krauss, K. W., Doyle, T. W., Twilley, R. R., Smith, T. J., Whelan, K. R. T., Sullivan, J. K. 2005Woody debris in the mangrove forests of South FloridaBiotropica37915CrossRefGoogle Scholar
  31. Leonard, L., A. Croft, D. Childers, S. Mitchell-Bruker, H. Solo-Gabriele & M. Ross, 2006. Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: implications for particulate transport. Hydrobiologia 569: 5–22Google Scholar
  32. Liston, S. E. 2006Interactions between nutrient availability and hydroperiod shape macroinvertebrate communities in Florida Everglades marshesHydrobiologia569343357Google Scholar
  33. Light, S. S., Dineen, J. W. 1994

    Water control in the Everglades: a historical perspective

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressFL
    Google Scholar
  34. Lockwood, J. L., Ross, M. S., Sah, J. P. 2003Smoke on the water: the interplay of fire and water flow on Everglades restorationFrontiers in Ecology and the Environment1462468Google Scholar
  35. Lorenz, J. J., Seraty, J. E. 2006Subtropical wetland fish assemblages and changing salinity regimes: Implications for everglades restorationHydrobiologia569401421Google Scholar
  36. Lu, X., Childers, D. L., Hanna, J. V., Maie, N., Jaffe, R. 2003Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida EvergladesWater Research3725992560PubMedCrossRefGoogle Scholar
  37. Maie, N., Yang, C., Miyoshi, T., Parish, K., Jaffe, R. 2005Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystemLimnology and Oceanography502335CrossRefGoogle Scholar
  38. Maie, N., R. Jaffe, M. Toshikazu & D. L. Childers, 2006. Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry (in press)Google Scholar
  39. Mead, R. N., Xu, Y., Chong, J., Jaffe, R. 2005Sedimentary organic matter source assessment in a sub-tropical wetland and estuarine environment using the molecular distribution and carbon isotopic composition of n-alkanesOrganic Geochemistry36363370CrossRefGoogle Scholar
  40. Neto, R., R. N. Mead, W. J. Louda & R. Jaffe, 2005. Organic biogeochemistry of detrital flocculent material (floc) in a subtropical, coastal wetland. Biogeochemistry (in press)Google Scholar
  41. Noe, G., Childers, D. L., Jones, R. D. 2001Phosphorus biogeochemistry and the impacts of phosphorus enrichment: why is the Everglades so uniqueEcosystems4603624CrossRefGoogle Scholar
  42. Parker, F. M. P. III, 2000. Quantifying spatial and temporal variability in marsh–water column interactions in a southern Everglades Marsh. MS Thesis, Florida International UniversityGoogle Scholar
  43. Price, R. M., P. K., Swart, Fourqurean, J. W. 2006Coastal groundwater discharge – an additional source of phosphorus for the oligotrophic wetlands of the EvergladesHydrobiologia5692336Google Scholar
  44. Rehage, J. S., Trexler, J. C. 2006Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: community structure relative to distance from canalsHydrobiologia569359373Google Scholar
  45. Romero, L. M., Fourqurean, J. W., Smith, T. J. 2005Changes in mass and nutrient content of wood during decomposition in a South Florida mangrove forestJournal of Ecology93618631CrossRefGoogle Scholar
  46. Romigh, M. M., Davis, S. E.,III, Rivera-Monroy, V. H., Twilley, R. R. 2006Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal EvergladesHydrobiologia569505516Google Scholar
  47. Ross, M. S., Meeder, J. F., Sah, J. P., Telesnicki, G. J. 2000The Southeast Saline Everglades revisited: 50 years of coastal vegetation changeJournal of Vegetation Science11101112CrossRefGoogle Scholar
  48. Ross, M. S., Reed, D. R., Sah, J. P., Ruiz, P. L., Lewin, M. 2003Vegetation:environment relationships and water management in Shark Slough, Everglades National ParkWetlands Ecology and Management11291303CrossRefGoogle Scholar
  49. Rubio, G. A. & D. L. Childers, 2006. Decomposition of Cladium jamaicense, Eleocharis sp., and Juncus roemerianus in the estuarine ecotones of the Florida Everglades. Estuaries (in press)Google Scholar
  50. Simard, M., K. Zhang, V. H. Rivera-Monroy, M. Ross, P. Ruiz, E. Castañeda-Moya, R. R. Twilley & E. Rodriguez, 2006. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogrammetric Engineering & Remote Sensing (in press)Google Scholar
  51. Scully, N. M., Maie, N., Dailey, S., Boyer, J., Jones, R. D., Jaffe, R. 2004Early diagenesis of plant-derived dissolved organic matter along a wetland, mangrove, estuary ecotoneLimnology and Oceanography4916671678CrossRefGoogle Scholar
  52. Trexler, J. C., Loftus, W. F., Perry, S. 2005Disturbance frequency and community structure in a twenty-five year intervention studyOecologia145140152PubMedCrossRefGoogle Scholar
  53. Ward, G. A., Smith, T. J.,III, Whelan, K. R. T., Doyle, T. W. 2006Regional processes in mangrove ecosystems: spatial scaling relationships, biomass, and turnover rates following catastrophic disturbanceHydrobiologia569517527Google Scholar
  54. Williams, C. J., Jochem, F. J. 2006Ectoenzymes kinetics in Florida Bay: Implications for bacterial carbon source and nutrient statusHydrobiologia569113127Google Scholar
  55. Williams, A. J., Trexler, J. C. 2006A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern EvergladesHydrobiologia569493504Google Scholar
  56. Wood, A. D., 2005. Dynamics of detrital particulate organic material in the ridge & slough landscape. MS Thesis, Florida International UniversityGoogle Scholar
  57. Xu, Y., Mead, R. N., Jaffé, R. 2006 A molecular marker-based assessment of sedimentary organic matter sources and distributions in Florida BayHydrobiologia569179192Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Biological Sciences & Southeast Environmental Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations