Hydrobiologia

, Volume 569, Issue 1, pp 493–504 | Cite as

A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern Everglades

Article

Abstract

We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbelladuryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13 compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.

Keywords

detritus disturbance food-chain length food web stable isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), 1995. The Chironomidae. Biology and Ecology of Non-Biting Midges. Chapman & Hall, LondonGoogle Scholar
  2. Briand, F., Cohen, J. E 1987Environmental correlates of food chain lengthScience238956959PubMedGoogle Scholar
  3. Brinson, M. M., Lugo, A. E., Brown, S. 1981Primary productivity, decomposition and consumer activity in freshwater wetlandsAnnual Review of Ecology and Systematics12123161CrossRefGoogle Scholar
  4. Browder, J. A., Gleason, P. J., Swift, D. R. 1994

    Periphyton in the Everglades: spatial variation, environmental correlates, and ecological implications

    Davis, S. M.Ogden, J. C. eds. Everglades: the Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL379418
    Google Scholar
  5. Brown, K. M. 1991

    Mollusca and Gastropoda

    Covich, A. P. eds. Ecology and Classification of North American Freshwater InvertebratesAcademic Press IncSan Diego, CA285309
    Google Scholar
  6. Chang, F. Y., Kao, S. J., Liu, K. K. 1991Analysis of organic and carbonate carbon in sedimentsActa Oceanographica Taiwanica27140150Google Scholar
  7. Chick, J. H., Ruetz, C. R.,III, Trexler, J. C. 2004Spatial scale and abundance patterns of large fish communities in freshwater marshes of the Florida EvergladesWetlands24652664CrossRefGoogle Scholar
  8. Childers, D. L., Jones, R. D., Trexler, J., Buzzelli, C., Dailey, S., Edwards, A. L., Gaiser, E., Jayachandaran, K., Kenne, A., Lee, D., Meeder, J., Nair, M., Pechman, J., Renshaw, A., Richards, J., Rugge, M., Scinto, L., Sterling, P., Gelder, W. 2002

    Quantifying the effects of low-level phosphorus enrichment on unimpacted Everglades wetlands with in situ flumes and phosphorus dosing

    Porter, J. W.Porter, K. G. eds. The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: an Ecosystem SourcebookCRC PressBoca Raton, FL127152
    Google Scholar
  9. Clesceri, L. S., Greenberg, A. E., Eaton, A. E. 1998Standard Methods for the Examination of Water and Wastewater20American Public Health AssociationWashington, DCGoogle Scholar
  10. Cook, P. L. M., Revill, A. T., Clementson, L. A., Volkman, J. K. 2004Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. III. Sources of organic matterMarine Ecology-Progress Series2805572Google Scholar
  11. Covich, A. P., Thorpe, J. H. 1991

    Crustacea

    Thorp, J. H.Covich, A. P. eds. Ecology and Classification of North American Freshwater InvertebratesAcademic PressSan Diego, CA665683
    Google Scholar
  12. Davis, S. M. 1994

    Phosphorus inputs and vegetation sensitivity in the Everglades

    Davis, S. M.Ogden, J. C. eds. Everglades: the Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL357375
    Google Scholar
  13. DeNiro, M. J., Epstein, S. 1978Influence of diet on the distribution of carbon isotopes in animalsGeochimica et Cosmochimica Acta42495506CrossRefGoogle Scholar
  14. Fenchel, T. 1988Marine plankton food chainsAnnual Review of Ecology and Systematics191938CrossRefGoogle Scholar
  15. Geddes, P., Trexler, J. C. 2003Uncoupling of omnivore-mediated positive and negative effects on periphyton matsOecologia136585595PubMedCrossRefGoogle Scholar
  16. Grunwald, S., Reddy, K. R., Newman, S., DeBusk, W. F. 2004Spatial variability, distribution and uncertainty assessment of soil phosphorus in a south Florida wetlandEnvironmetrics15811825CrossRefGoogle Scholar
  17. Gunderson, L. H., Loftus, W. F. 1993

    The Everglades

    Echternacht, A. C. eds. Biodiversity of the Southeastern United StatesJohn Wiley & Sons, IncNew York199255
    Google Scholar
  18. Hairston, N. G.,Jr., Hairston, N. G.,Sr. 1993Cause–effect relationships in energy flow, trophic structure, and interspecific interactionsAmerican Naturalist142379411CrossRefGoogle Scholar
  19. Jennings, S., Warr, K. J. 2003Smaller predator–prey body size ratios in longer food chainsProceedings of the Royal Society of London Series B-Biological Sciences27014131417CrossRefGoogle Scholar
  20. Kurata, K., Minami, H., Kikuchi, E. 2001Stable isotope analysis of food sources for salt marsh snailsMarine Ecology-Progress Series223167177Google Scholar
  21. Loftus, W. F. 2000Accumulation and fate of mercury in an Everglades aquatic food webDepartment of Biological Sciences, Florida International University Miami295Ph.D. DissertationGoogle Scholar
  22. McCormick, P. V., Newman, S., Miao, S., Gawlik, D. E., Marley, D., Reddy, K. R., Fontaine, T. D. 2002

    Effects of anthropogenic phosphorus inputs on the Everglades

    Porter, J. WPorter, K. G. eds. The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: an Ecosystem SourcebookCRCBoca Raton83126
    Google Scholar
  23. McCutchan, J. H.,Jr., Lewis, W. M.,Jr., Kendall, C., McGrath, C. C. 2003Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfurOikos102378390CrossRefGoogle Scholar
  24. McElroy, T. C., Kandl, K. L., Garcia, J., Trexler, J. C. 2003Extinction–colonization dynamics structure genetic variation of spotted sunfish (Lepomis punctatus) in the Florida EvergladesMolecular Ecology12355368PubMedCrossRefGoogle Scholar
  25. Minagawa, M., Wada, E. 1984Stepwise enrichment of 15N along food chains: further evidence and the relation between d15N and animal ageGeochimica et Cosmochimica Acta4811351140CrossRefGoogle Scholar
  26. Mitsch, W. J., Gosselink, J. G. 1993Wetlands2Van Nostrand ReinholdNYGoogle Scholar
  27. Moore, J. C., Berlow, E. L, Coleman, D. C., deRuiter, P. C., Dong, Q., Hastings, A., Johnson, N. C., McCann, K. S., Melville, K., Morin, P. J., Nadelhoffer, K., Rosemond, A. D., Post, D. M., Sabo, J. L., Scow, K. M., Vanni, M. J., Wall, D. H. 2004Detritus, trophic dynamics and biodiversityEcology Letters7584600CrossRefGoogle Scholar
  28. Moore, J. C., Hunt, H. W. 1988Resource compartmentation and the stability of real ecosystemsNature333261263CrossRefGoogle Scholar
  29. Morin, P. J. 1999Community EcologyBlackwell Science, IncMalden, MAGoogle Scholar
  30. Oksanen, L., Fretwell, S. D., Niemela, J. A. P. 1981Exploitation ecosystems in gradients of primary productivityAmerican Naturalist118240261CrossRefGoogle Scholar
  31. Peterson, B. J., Fry, B. 1987Stable isotopes in ecosystem studiesAnnual Review of Ecology and Systematics18293320CrossRefGoogle Scholar
  32. Pimm, S. L. 1982Food WebsChapman and HallNYGoogle Scholar
  33. Pinnegar, J. K., Polunin, N. V. C. 1999Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactionsFunctional Ecology13225231CrossRefGoogle Scholar
  34. Post, D. M. 2002aThe long and short of food-chain lengthTrends in Ecology and Evolution17269277CrossRefGoogle Scholar
  35. Post, D. M. 2002bUsing stable isotopes to estimate trophic position: models, methods, and assumptionsEcology83703718Google Scholar
  36. Post, D. M., Pace, M. L., Hairston, N. G. J. 2000Ecosystem size determines food-chain length in lakesNature40510471049PubMedCrossRefGoogle Scholar
  37. Power, M. E., Parker, M. S., Wooton, J. T. 1996

    Disturbance and food chain length in rivers

    Polis, G. A.Winemiller, K. O. eds. Food Webs. Integration of Patterns and DynamicsChapman & HallNY286297
    Google Scholar
  38. Radar, R. B., Richardson, C. J. 1994Response of macroinvertebrates and small fish to nutrient enrichment in the northern EvergladesWetlands14134146CrossRefGoogle Scholar
  39. Rozas, L. P., Odum, W. E. 1998Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refugeOecologia77101106CrossRefGoogle Scholar
  40. Ruetz, C. R.,III, Trexler, J. C., Jordan, F., Loftus, W. F., Perry, S. A. 2005Population dynamics of wetland fishes: spatiotemporal patterns shaped by hydrological disturbance?Journal of Animal Ecology74322332CrossRefGoogle Scholar
  41. Savino, J. F., Stein, R. A. 1982Predator–prey interactions between largemouth bass and bluegills as influenced by simulated, submerged vegetationTransactions of the American Fisheries Society111255266CrossRefGoogle Scholar
  42. Savino, J. F., Stein, R. A. 1989Behavioral interactions between fish predators and their prey: effects of plant densityAnimal Behavior37311321CrossRefGoogle Scholar
  43. Snedden, G. A., Kelso, W. E., Rutherford, D. A. 1999Diel and seasonal patterns of spotted gar movement and habitat use in the lower Atchafalaya River Basin, LouisianaTransactions of the American Fisheries Society128144154CrossRefGoogle Scholar
  44. Sobczak, W. V., Cloern, J. E., Jassby, A. D., Cole, B. E., Schraga, T. S., Arnsberg, A. 2005Detritus fuels ecosystem metabolism but not metazoan food webs in San Francisco estuary’s freshwater deltaEstuaries28124137CrossRefGoogle Scholar
  45. Sotiropoulos, M. A., Tonn, W. M., Wassenaar, L I. 2004Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studiesEcology of Freshwater Fish13155160CrossRefGoogle Scholar
  46. Steinman, A. D. 1996

    Effects of grazers on freshwater benthic algae

    Stevenson, R. J.Bothwell, M. L.Lowe, R. L. eds. Algal EcologyAcademic PressSan Diego341373
    Google Scholar
  47. Sterner, R. W., Elser, J. J. 2002Ecological StoichiometryPrinceton University PressPrincetonGoogle Scholar
  48. Trexler, J. C., Loftus, W. F., Perry, S. 2005Frequency of disturbance limits Everglades fishes demonstrated with a twenty-five year intervention studyOecologia145140152PubMedCrossRefGoogle Scholar
  49. Trexler, J. C., Loftus, W. F., Jordan, C. F., Chick, J., Kandl, K. L., McElroy, T. C., Bass, O. L. 2002

    Ecological scale and its implications for freshwater fishes in the Florida Everglades

    Porter, J. WPorter, K. G. eds. The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: an Ecosystem SourcebookCRCBoca Raton153181
    Google Scholar
  50. Vanderklift, M. A., Ponsard, S. 2003Sources of variation in consumer-diet δN15 enrichment: a meta-analysisOecologia136169182PubMedCrossRefGoogle Scholar
  51. Vander Zanden, M. J., Rasmussen, J. B. 2001Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studiesLimnology and Oceanography4620612066CrossRefGoogle Scholar
  52. Vander Zanden, M. J., Shuter, B. J., Lester, N., Rasmussen, J. B. 1999Patterns of food chain length in lakes: a stable isotope studyAmerican Naturalist154406416PubMedCrossRefGoogle Scholar
  53. Wetzel, R. G. 2001Limnology3Academic PressSan DiegoGoogle Scholar
  54. Younger, M. S. 1979A Handbook for Linear RegressionDuxbury PressNorth Scituate, MassGoogle Scholar
  55. Zar, J. H. 1999Biostatistical Analysis4Prentice HallUpper Saddle River, NJGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Biological SciencesFlorida International UniversityMiamiUSA

Personalised recommendations