Hydrobiologia

, Volume 569, Issue 1, pp 475–492 | Cite as

Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park

  • Colin J. Saunders
  • Min Gao
  • Jason A. Lynch
  • Rudolf Jaffé
  • Daniel L. Childers
Article

Abstract

We measured the abundance of Cladium jamaicense (Crantz) seeds and three biomarkers in freshwater marsh soils in Shark River Slough (SRS), Everglades National Park (ENP) to determine the degree to which these paleoecological proxies reflect spatial and temporal variation in vegetation. We found that C. jamaicense seeds and the biomarkers Paq, total lignin phenols (TLP) and kaurenes analyzed from surface soils were all significantly correlated with extant aboveground C. jamaicense biomass quantified along a vegetation gradient from a C. jamaicense to a wet prairie/slough (WPS) community. Our results also suggest that these individual proxies may reflect vegetation over different spatial scales: Paq and kaurenes correlated most strongly (R2 = 0.88 and 0.99, respectively) with vegetation within 1 m of a soil sample, while seeds and TLP reflected vegetation 0–20 m upstream of soil samples. These differences in the spatial scale depicted by the different proxies may be complementary in understanding aspects of historic landscape patterning. Soil profiles of short (25 cm) cores showed that downcore variation in C. jamaicense seeds was highly correlated with two of the three biomarkers (Paq, R2 = 0.84, p<0.005; TLP, R2 = 0.97, p<0.0001), and all four of the proxies indicated a recent increase in C. jamaicense biomass at the site. Using a preliminary depth-to-age relationship based on matching charcoal peaks with available ENP fire records (1980-present) specific to our coring site, we found that peak-depths in C. jamaicense seed concentration appeared to correspond to recent minimum water levels (e.g., 1989 and 2001), and low seed abundance corresponded to high water levels (e.g., 1995), consistent with the known autecology of C. jamaicense. In summary, the combination of C. jamaicense seeds and biomarkers may be useful for paleoecological reconstruction of vegetation change and ultimately in guaging the success of ongoing efforts to restore historic hydrologic conditions in the South Florida Everglades.

Keywords

biomarkers Cladium Everglades paleoecology slough 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, T. R. 1971Sawgrass biology related to the future of the Everglades ecosystemSoil and Crop Science Society of Florida Proceedings317274Google Scholar
  2. Beckage, B., Platt, W. J., Slocum, M. G., Pank, B. 2003Influence of the El Nino Southern Oscillation on fire regimes in the Florida EvergladesEcology8431243130Google Scholar
  3. Childers, D. L., Iwaniec, D., Rondeau, D., Rubio, G., Verdon, E., Madden, C. J. 2006Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshes>Hydrobiologia569273292Google Scholar
  4. Clark, J. S. 1988Stratigraphic charcoal analysis on petrographic thin-sections – application to fire history in Northwestern MinnesotaQuaternary Research308191CrossRefGoogle Scholar
  5. Clark, J. S., Hussey, T. C. 1996Estimating the mass flux of charcoal from sedimentary records: effects of particle size, morphology, and orientationHolocene6129144Google Scholar
  6. Clark, J. S., Royall, P. D. 1996Local and regional sediment charcoal evidence for fire regimes in presettlement north-eastern North AmericaJournal of Ecology84365382CrossRefGoogle Scholar
  7. Cohen, A. D., Gage, C. P., Moore, W. S. 1999Combining organic petrography and palynology to assess anthropogenic impacts on peatlands – part 1. an example from the northern Everglades of FloridaInternational Journal of Coal Geology39345CrossRefGoogle Scholar
  8. Craft, C. B., Richardson, C. J. 1993Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlandsEcological Applications3446458CrossRefGoogle Scholar
  9. Craft, C. B., Richardson, C. J. 1998Recent and long-term organic soil accretion and nutrient accumulation in the Everglades,Soil Science Society of America Journal62834843CrossRefGoogle Scholar
  10. Daoust, R. J., Childers, D. L. 1998Quantifying aboveground biomass and estimating net aboveground primary production for wetland macrophytes using a non-destructive phenometric techniqueAquatic Botany62115133CrossRefGoogle Scholar
  11. Daoust, R. J., Childers, D. L. 2004Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystemOecologia141672686PubMedCrossRefGoogle Scholar
  12. Das, B., Kumar Chakravarty, A., Masuda, K., Suzuki, H., Ageta, H. 1994A diterpenoid from roots of Gelonium multiflorumPhytochemistry3713631366CrossRefGoogle Scholar
  13. Davis, S. M., Gunderson, L. H., Park, W. A., Richardson, J. R., Mattson, J. E. 1994

    Landscape dimension, composition, and function in a changing Everglades ecosystem

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach419444
    Google Scholar
  14. DeAngelis, D. L., White, P. S. 1994

    Ecosystems as products of spatially and temporally varying driving forces, ecological processes, and landscapes: a theoretical perspective

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach927
    Google Scholar
  15. Donders, T. H., Wagner, F., Borg, K., Jong, A. F. M., Visscher, H. 2004A novel approach for developing high-resolution sub-fossil peat chronologies with C-14 datingRadiocarbon46455463Google Scholar
  16. Fernandez-Martin, R., Domenech, C., Cerda-Olmedo, E., Avalos, J. 2000ent-Kaurene and squalene synthesis in Fusarium fujikuroi cell-free extractsPhytochemistry54723728PubMedCrossRefGoogle Scholar
  17. Ficken, K. J., Li, B., Swain, D. L., Eglinton, G. 2000An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytesOrganic Geochemistry31745749CrossRefGoogle Scholar
  18. Gordon, E., Valk, A. G. 2003Secondary seed dispersal in Montrichardia arborescens (l.) Schott dominated wetlands in Laguna Grande, VenezuelaPlant Ecology168177190CrossRefGoogle Scholar
  19. Grandin, U., Rydin, H. 1998Attributes of the seed bank after a century of primary succession on islands in Lake Hjalmaren, SwedenJournal of Ecology86293303CrossRefGoogle Scholar
  20. Gunderson, L. H., Snyder, J. R. 1994

    Fire patterns in the Southern Everglades

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach291305
    Google Scholar
  21. Gunderson, L. H. 1994

    Vegetation of the Everglades: determinants of community composition

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, Florida323340
    Google Scholar
  22. Hatcher, P. G., Nanny, M. A., Minard, R. D., Dible, S. D., Carson, D. M. 1995Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH)Organic Geochemistry23881888CrossRefGoogle Scholar
  23. Hedges, J. I., Mann, D. C. 1979The characterization of plant tissues by their lignin oxidation productsGeochimica et Cosmochimica Acta4318031807CrossRefGoogle Scholar
  24. Higuchi, T., 1985. Biosynthesis of lignin. In Higuchi, T. (ed.), Academic Press, New York, 141–160Google Scholar
  25. Hoffman, W., Bancroft, G. T., Sawicki, R. J. 1994

    Foraging habitat of wading birds in the Water Conservation Areas of the Everglades

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach585614
    Google Scholar
  26. Huiskes, A. H. L., Koutstaal, B. P., Herman, P. M. J., Beeftink, W. G., Markusse, M. M., Demunck, W. 1995Seed dispersal of halophytes in tidal salt marshesJournal of Ecology83559567CrossRefGoogle Scholar
  27. Jaffé, R., Mead, R., Hernandez, M. E., Peralba, M. C., Diguida, O. A. 2001Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based studyOrganic Geochemistry32507526CrossRefGoogle Scholar
  28. Jakupovic, J., Ganzer, U., Bohlmann, F., King, R. M. 1991Kaurane and beyerane derivatives from Calocephalus knappiiPhytochemistry3026512652CrossRefGoogle Scholar
  29. Jordan, F., Jelks, H. L., Kitchens, W. M. 1997Habitat structure and plant community composition in a Northern Everglades wetland landscapeWetlands17275283Google Scholar
  30. Kogel-Knabner, I. 2002The macromolecular organic composition of plant and microbial residues as inputs to soil organic matterSoil Biology and Biochemistry34139162CrossRefGoogle Scholar
  31. Leeds, J. A., Smith, S. M., Garrett, P. B. 2002Seedbanks and their potential role in the vegetation dynamics of a northern Everglades marshFlorida Scientist651634Google Scholar
  32. Light, S. S., Dineen, J. W. 1994

    Water control in the Everglades: a historical perspective

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach4784
    Google Scholar
  33. Lorenzen, B., Brix, H., Mckee, K. L., Mendelssohn, I. A., Miao, S. L. 2000Seed germination of two everglades species, Cladium jamaicense and Typha domingensisAquatic Botany66169180CrossRefGoogle Scholar
  34. Lynch, J. A., Clark, J. S., Stocks, B. J. 2004Charcoal production, dispersal, and deposition from the fort providence experimental fire: interpreting fire regimes from charcoal records in boreal forestsCanadian Journal of Forest Research3416421656CrossRefGoogle Scholar
  35. Mayer, T. D. 2005Water-quality impacts of wetland management in the lower Klamath National Wildlife Refuge, Oregon and California, USAWetlands25697712CrossRefGoogle Scholar
  36. McCormick, P. V., Shuford, R. B. E., Backus, J. G., Kennedy, W. C. 1998Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USAHydrobiologia362185208CrossRefGoogle Scholar
  37. McVoy, C. W., 2000. Water flow and landscape pattern in the pre-drainage Everglades. Abstracts, 15th Annual Symposium, U. S. Regional Association of the International Association for Landscape Ecology, Fort Lauderdale, FL, 127Google Scholar
  38. Mead, R., Xu, Y. P., Chong, J., Jaffé, R. 2005Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanesOrganic Geochemistry36363370CrossRefGoogle Scholar
  39. Mitsch, W. J. 2005Applying science to conservation and restoration of the world’s wetlandsWater Science and Technology511326PubMedGoogle Scholar
  40. Neto, R. R., Mead, R. N., Louda, J. W., Jaffé, R. 2006Organic biogeochemistry of detrital flocculent material (floc) in a subtropical, coastal wetlandBiogeochemistry77283304CrossRefGoogle Scholar
  41. Newman, S., Grace, J. B., Koebel, J. W. 1996Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for Everglades restorationEcological Applications6774783CrossRefGoogle Scholar
  42. Noble, R. A., Alexander, R., Kagi, R. I., Knox, J. 1985Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oilsGeochimica et Cosmochimica Acta4921412147CrossRefGoogle Scholar
  43. Noe, G. B., Childers, D. L., Jones, R. D. 2001Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique?Ecosystems4603624CrossRefGoogle Scholar
  44. Noe, G. B., Scinto, L. J., Taylor, J., Childers, D. L., Jones, R. D. 2003Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing studyFreshwater Biology4819932008CrossRefGoogle Scholar
  45. Perry, W. 2004Elements of South Florida’s Comprehensive Everglades Restoration PlanEcotoxicology13185193PubMedCrossRefGoogle Scholar
  46. Ross, M. S., Reed, D. L., Sah, J. P., Ruiz, P. L., Lewin, M. T. 2003Vegetation:environment relationships and water management in Shark Slough, Everglades National ParkWetlands Ecology and Management11291303CrossRefGoogle Scholar
  47. Saunders, C. J. 2003Soil accumulation in a Chesapeake Bay Salt Marsh: modeling 500 years of global change, vegetation change, and rising atmospheric CO2Duke UniversityDurham, NCPh.D. thesisGoogle Scholar
  48. Science Coordination Team, 2003. The role of flow in the Everglades ridge and slough landscape, South Florida Ecosystem Restoration Working Group, www.sfrestore.orgGoogle Scholar
  49. Sklar, F., .McVoy, C. W., Darwish, M., Davis, S., Fitz, C., Gawlik, D., Miao, S., Korvela, M., Madden, C., Mendelssohn, I., Newman, S., Ogden, J., Otero, J., Shuford, R., Smith, S. 2001

    Chapter 2: Hydrologic needs: effects of hydrology on the Everglades

    Redfield, G. eds. Everglades Consolidated ReportSouth Florida Water Management District, West Palm BeachFlorida168
    Google Scholar
  50. Smith, S. M., Mccormick, P. V., Leeds, J. A., Garrett, P. B. 2002Constraints of seed bank species composition and water depth for restoring vegetation in the Florida Everglades, USARestoration Ecology10138145CrossRefGoogle Scholar
  51. Smith, S. M., Newman, S., Garrett, P. B., Leeds, J. A. 2001Differential effects of surface and peat fire on soil constituents in a degraded wetland of the northern Florida EvergladesJournal of Environmental Quality3019982005PubMedCrossRefGoogle Scholar
  52. Snyder, G. H., Davidson, J. M. 1994

    Everglades agriculture: past, present, and future

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach85115
    Google Scholar
  53. Snyder, J. M., Richards, J. H. 2005Floral phenology and compatibility of sawgrass, Cladium jamaicense (Cyperaceae)American Journal of Botany92736743Google Scholar
  54. Steward, K. K., Ornes, W. H. 1975Autecology of saw-grass in Florida EvergladesEcology56162171CrossRefGoogle Scholar
  55. Ungar, I. A., Khan, M. A. 2001Effect of bracteoles on seed germination and dispersal of two species of AtriplexAnnals of Botany87233239CrossRefGoogle Scholar
  56. Valk, A. G., Davis, C. B. 1979A reconstruction of the recent vegetational history of a prairie marsh, Eagle Lake Iowa USA, from its seed bankAquatic Botany62952CrossRefGoogle Scholar
  57. Valk, A. G., Rosburg, T. R. 1997Seed bank composition along a phosphorus gradient in the northern Florida EvergladesWetlands17228236CrossRefGoogle Scholar
  58. Venkatesan, M. I., Ruth, E., Kaplan, I. R. 1986Terpenoid hydrocarbons in Hula peat: structure and originsGeochimica et Cosmochimica Acta5011331139CrossRefGoogle Scholar
  59. Walters, D., Shrubsole, D. 2005Assessing efforts to mitigate the impacts of drainage on wetlands in Ontario, CanadaCanadian Geographer-Geographe Canadien49155171CrossRefGoogle Scholar
  60. Willard, D. A., C. W. Holmes & L. M. Weimer, 2001a. The Florida Everglades ecosystem: climatic and anthropogenic impacts over the last two millennia. In Wardlaw B. R. (ed.), Bulletins of American Paleontology 361: 41–55Google Scholar
  61. Willard, D. A., Weimer, L. M., Riegel, W. L. 2001bPollen assemblages as paleoenvironmental proxies in the Florida EvergladesReview of Palaeobotany and Palynology113213235CrossRefGoogle Scholar
  62. Winkler, M. G., P. R. Sanford & S. W. Kaplan, 2001. Hydrology, vegetation, and climate change in the Southern Everglades during the Holocene. In Wardlaw B. R. (ed.), Bulletins of American Paleontology 361: 57–98Google Scholar
  63. Xiang, W., Li, R.-T., Wang, Z.-Y., Li, S.-H., Zhao, Q.-S., Zhang, H.-J., Sun, H.-D. 2004ent-kaurene diterpenoids from Isodon oresbiusPhytochemistry6511731177PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Colin J. Saunders
    • 1
  • Min Gao
    • 1
    • 2
  • Jason A. Lynch
    • 3
  • Rudolf Jaffé
    • 1
    • 2
  • Daniel L. Childers
    • 1
    • 4
  1. 1.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  2. 2.Department of Chemistry and BiochemistryFlorida International UniversityMiamiUSA
  3. 3.Department of BiologyNorth Central CollegeNapervilleUSA
  4. 4.Department of Biological SciencesFlorida International UniversityMiamiUSA

Personalised recommendations