Hydrobiologia

, Volume 569, Issue 1, pp 459–474 | Cite as

Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades

  • Sharon M. L. Ewe
  • Evelyn E. Gaiser
  • Daniel L. Childers
  • David Iwaniec
  • Victor H. Rivera-Monroy
  • Robert R. Twilley
Article

Abstract

We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.

Keywords

Cladium jamaicense periphyton Rhizophora mangle Avicennia germinans Laguncularia racemosa Thalassia testudinum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, A. R., Frankovich, T. A., Heck, K. L.,Jr, Fourqurean, J. W. 2005Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida BayEstuaries28422434CrossRefGoogle Scholar
  2. Boyer, J. N., Fourqurean, J. W., Jones, R. D. 1999Seasonal and long-term trends in water quality of Florida Bay (1989–97)Estuaries22417430CrossRefGoogle Scholar
  3. Browder, J. A., D. Cottrell, M. Brown, M. Newman, R. Edwards, J. Yuska, M. Browder & J. Krakosi (1982) Biomass and primary production of microphytes and macrophytes in periphyton habitats of the southern Everglades, Report T-662. South Florida Research Center, Homestead, FLGoogle Scholar
  4. Burrows, S. N., Gower, S. T., Norman, J. M., Diak, G., Mackay, D. S., Ahl, D. E., Clayton, M. K. 2003Spatial variability of aboveground net primary production for a forested landscape in northern WisconsinCanadian Journal of Forest Research3320072018CrossRefGoogle Scholar
  5. Chapin, F. S.,III 1980The mineral nutrition of wild plantsAnnual Review of Ecology and Systematics11233260CrossRefGoogle Scholar
  6. Chapin, F. S.,III, Schulze, E.-D., Mooney, H. A. 1990The ecology and economics of storage in plantsAnnual Review of Ecology and Systematics21423447CrossRefGoogle Scholar
  7. Chen, R., Twilley, R. R. 1999Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, FloridaEstuaries22955970CrossRefGoogle Scholar
  8. Chen, X., Lohrenz, S. E., Weisenburg, D. A. 2000Distribution and controlling mechanisms of primary production on the Louisiana–Texas continental shelfJournal of Marine Systems25179207CrossRefGoogle Scholar
  9. Chiang, C., Craft, C. B., Rogers, D. W., Richardson, C. J. 2000Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communitiesAquatic Botany686178CrossRefGoogle Scholar
  10. Childers, D. L., Jones, R. D., Trexler, J. C., Buzzelli, C., Boyer, J., Edwards, A. L., Gaiser, E. E., Jayachandaran, K., Lee, D., Meeder, J.F., Pechmann, J., Richards, J. H., Scinto, L. J. 2001

    Quantifying the effects of low level phosphorus enrichment on unimpacted Everglades wetlands with in situ flumes and phosphorus dosing

    Porter, J.Porter, K. eds. The Everglades, Florida Bay, and Coral Reefs of the Florida KeysCRC PressBoca Raton, FL, USA127152
    Google Scholar
  11. Childers, D. L., Iwaniec, D., Rondeau, D., Rubio, G., Verdon, E. , Madden, C. J. 2006aResponses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshesHydrobiologia569273292Google Scholar
  12. Childers, D. L., Boyer, J. N., Davis, S. E., Madden, C. J., Rudnick, D.T., Sklar, F. H. 2006bRelating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida EvergladesLimnology and Oceanography51602616CrossRefGoogle Scholar
  13. Cintron, G., Schaeffer Novelli, Y. 1984

    Methods for studying mangrove structure

    Snedaker, S. C.Snedaker, J. G. eds. The Mangrove Ecosystem: Research MethodsUNESCOParis, France91113
    Google Scholar
  14. Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J.R., Ni, J., Holland, E. A. 2001Net primary production in tropical forests: an evaluation and synthesis of existing field dataEcological Applications11371384CrossRefGoogle Scholar
  15. Craft, C. B., Vymazal, J., Richardson, C. J. 1995Response of Everglades plant communities to nitrogen and phosphorus additionsWetlands15258271CrossRefGoogle Scholar
  16. Daoust, R. J., Childers, D. L. 1998Quantifying aboveground biomass and estimating net aboveground primary production for wetland macrophytes using a non-destructive phenometric techniqueAquatic Botany62115133CrossRefGoogle Scholar
  17. Daoust, R. J., Childers, D. L. 2004Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystemOecologia141672686PubMedCrossRefGoogle Scholar
  18. Day, J. W., Conner, W. H., Ley-Lou, F., Day, R. H., Navarro, A. M. 1987The productivity and composition of mangrove forests, Laguna de Terminos, MexicoAquatic Botany27267284CrossRefGoogle Scholar
  19. Davis, S. M., 1989. Sawgrass and cattail production in relation to nutrient supply in the Everglades. In Sharitz, R. R. & J.W. Gibbons (eds), Freshwater wetlands and wildlife. CONF-8603101, DOE symposium series no. 61, USDOE Office of Scientific and Technical Information, Oak Ridge, TN, pp.325–341Google Scholar
  20. Davis, S. M. 1994

    Phosphorus inputs and vegetation sensitivity in the Everglades

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and Its RestorationSt Lucie PressDelray Beach, FL357378
    Google Scholar
  21. Dierssen, H., Zimmerman, R., Leathers, R. A., Downes, T. V., Davis, C. O. 2003Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imageryLimnology and Oceanography48444455CrossRefGoogle Scholar
  22. Frankovich, T., Fourqurean, J. A. 1997Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, FL, USAMarine Ecology Progress Series1593750Google Scholar
  23. Frankovich, T., Zieman, J. 2005Periphyton light transmission relationships in Florida Bay and the Florida KeysAquatic Botany831430CrossRefGoogle Scholar
  24. Frankovich, T. A., Gaiser, E. E., Zieman, J. C., Wachnicka, A. H. 2006Spatial and temporal distributions of epiphytic diatoms growing on Thalassiatestudinum Banks ex König: relationships to water qualityHydrobiologia569259271Google Scholar
  25. Fourqurean, J. W., Zieman, J. C., Powell, G. V. N. 1992Phosphorus limitation of primary production in Florida Bay: evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinumLimnology and Oceanography37162171Google Scholar
  26. Fourqurean, J. W., Robblee, M. B. 1999Florida Bay: a history of recent ecological changesEstuaries22345357CrossRefGoogle Scholar
  27. Fourqurean, J. W., Zieman, J. 2002Seagrass nutrient content reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys, FL, USABiogeochemistry61229245CrossRefGoogle Scholar
  28. Gaiser, E. E., Wachnicka, A., Ruiz, P., Tobias, F., Ross, M. S. 2004

    Diatom indicators of ecosystem change in coastal wetlands

    Bortone, S. eds. Estuarine IndicatorsCRC PressBoca Raton, FL127144
    Google Scholar
  29. Gaiser, E. E., Trexler, J., Richards, J., Childers, D., Lee, D., Edwards, A. L., Scinto, L., Jayachandran, K., Noe, G., Jones, R. 2005Cascading ecological effects of low-level phosphorus enrichment in the Florida EvergladesJournal of Environmental Quality34403407Google Scholar
  30. Gaiser, E. E., Richards, J., Trexler, J., Jones, R., Childers, D. 2006Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional changeLimnology and Oceanography51617630CrossRefGoogle Scholar
  31. Gottlieb, A. D., 2003. Short and long hydroperiod Everglades periphyton mats: community characterization and experimental hydroperiod manipulation. Florida International University, PhD Dissertation. 253 pGoogle Scholar
  32. Gottlieb, A. D., Richards, J. H., Gaiser, E. E. 2005Effects of desiccation duration on the community structure and nutrient retention of short- and long-hydroperiod Everglades periphyton matsAquatic Botany8299112CrossRefGoogle Scholar
  33. Graumlich, L. J., Brubaker, L. B., Grier, C. C. 1989Long-term trends in forest net primary productivity: Cascade Mountains, WashingtonEcology70405410CrossRefGoogle Scholar
  34. Hansen, A. J., Rotella, J. J., Kraska, M. P. V., Brown, D. 2000Spatial patterns of primary productivity in the greater Yellowstone ecosystemLandscape Ecology15505522CrossRefGoogle Scholar
  35. Iwaniec, D. M., Childers, D. L., Rondeau, D., Madden,  C. J., Saunders, C. J. 2006Effects of hydrologic and water quality drivers on periphyton dynamics in the southern EvergladesHydrobiologia569223236Google Scholar
  36. Juman, R. A. 2005The structure and productivity of the Thalassiatestudinum community in Bon Accord Lagoon, TobagoRevista de Biologia Tropical53219227PubMedGoogle Scholar
  37. Knapp, A. K., Briggs, J. M., Koelliker, J. K. 2001Frequency and extent of water limitation to primary production in a mesic temperate grasslandEcosystems41928CrossRefGoogle Scholar
  38. Koch, M. S., Reddy, K. R. 1992Distribution of soil and plant nutrients along a trophic gradient in the Florida EvergladesSoil Science Society of America Journal5614921499CrossRefGoogle Scholar
  39. Koch, M. S., Madden, C. J. 2001Patterns of primary production and nutrient availability in a Bahamas lagoon with fringing mangrovesMarine Ecology Progress Series219109119Google Scholar
  40. Loveless, C. M. 1959A study of the vegetation in the Florida EvergladesEcology4019CrossRefGoogle Scholar
  41. Lugo, A., Snedaker, S. 1974The ecology of mangrovesAnnual Review of Ecology and Systematics53964CrossRefGoogle Scholar
  42. McCormick, P. V., Rawlik, P. S., Lurding, K., Smith, E. P., Sklar, F.H. 1996Periphyton-water quality relationships along a nutrient gradient in the northern EvergladesJournal of the North American Benthological Society15433449CrossRefGoogle Scholar
  43. McKee, K. L. 1993Soil physicochemical patterns and mangrove species distribution-reciprocal effects?Journal of Ecology81477487CrossRefGoogle Scholar
  44. Noe, G. B., Childers, D. L., Jones, R. D. 2001Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique?Ecosystems4603624CrossRefGoogle Scholar
  45. Nuttle, W. K., Fourqurean, J. W., Cosby, B. J., Zieman, J. C., Robblee, M. B. 2000Influence of net freshwater supply on salinity in Florida BayWater Resources Research3618051822CrossRefGoogle Scholar
  46. Price,  R. M., Swart, P. K., Fourqurean, J. W. 2006Coastal groundwater discharge – an additional source of phosphorus for the oligotrophic wetlands of the EvergladesHydrobiologia5692336Google Scholar
  47. Raich, J. W., Russell, A. E., Vitousek, P. M. 1997Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, HawaiiEcology78707721CrossRefGoogle Scholar
  48. Rejmankova, E., Komarkova, J. 2000A function of cyanobacterial mats in phosphorus-limited tropical wetlandsHydrobiologia431135153CrossRefGoogle Scholar
  49. Ross, M. S., Ruiz, P. L., Telesnicki, G. J., Meeder, J. F. 2001Estimating above-ground biomass and production in mangrove commmunities in Biscayne National Park, Florida (USA)Wetlands Ecology and Management92737CrossRefGoogle Scholar
  50. Rudnick, D. T., Chen, Z., Childers, D. L., Boyer, J. N., Fontaine, T. D.,III 1999Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershedEstuaries22398416CrossRefGoogle Scholar
  51. Sala, O. E., Parton, W. J., Joyce, L. A., Lauenroth, W. K. 1988Primary production of the central grassland region of the United StatesEcology694045CrossRefGoogle Scholar
  52. Schuur, E. A. G., Matson, P. A. 2001Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forestOecologia128431442CrossRefGoogle Scholar
  53. Sherman, R. E., Fahey, T. E., Martinez, P. 2003Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican RepublicEcosystems6384398CrossRefGoogle Scholar
  54. Sklar, F., McVoy, C., VanZee, R., Gawlik, D. E., Tarboton, K., Rudnick, D., Miao, S-L., Armentano, T. 2001

    The effects of altered hydrology on the ecology of the Everglades

    Porter, J. W.Porter, K. G. eds. The Everglades, Florida Bay and Coral Reefs of the Florida Keys: An Ecosystem SourcebookCRC PressBoca Raton, FL3982
    Google Scholar
  55. Smith, E. P., McCormick, P. V. 2001Long-term relationship between phosphorus inputs and wetland phosphorus concentrations in a northern Everglades marshEnvironmental Monitoring and Assessment68153176PubMedCrossRefGoogle Scholar
  56. Sousa, W. P., Quek, S. P., Mitchell, B. J. 2003Regeneration of Rhizophora mangle in a Caribbean mangrove forest: interacting effects of canopy disturbance and stem-boring beetleOecologia137436445PubMedCrossRefGoogle Scholar
  57. Thomas, S. E., E. E. Gaiser, M. Gantar, L. J. Scinto, R.D. Jones, 2006. Quantifying the response of dry, calcareous periphyton mats to wetting in a short-hydroperiod, oligotrophic subtropical wetland. Aquatic Botany, 2006Google Scholar
  58. Thormann, M. N., Bayley, S. E. 1997Aboveground net primary production along a bog-fen-marsh gradient in southern boreal Alberta, CanadaEcoscience4374384Google Scholar
  59. Twilley, R. R., Rivera-Monroy, V. H. 2005Developing performance criteria using simulation models of mangrove ecosystem restoration: a case study of the Florida Coastal EvergladesJournal of Coastal Research407993Google Scholar
  60. Vymazal, J. 1995Algae and Elemental Cycling in WetlandsLewis PublishersBoca Raton, FLGoogle Scholar
  61. Vitousek, P. M., Howarth, R. W. 1991Nitrogen limitation on land and in the sea: how can it occur?Biogeochemistry1387115CrossRefGoogle Scholar
  62. Zieman, J. C. 1974Methods for the study of growth and production of turtle grass, Thalassia testudinum KonigAquaculture4139143CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Sharon M. L. Ewe
    • 1
  • Evelyn E. Gaiser
    • 1
  • Daniel L. Childers
    • 1
  • David Iwaniec
    • 1
  • Victor H. Rivera-Monroy
    • 2
  • Robert R. Twilley
    • 2
  1. 1.Southeast Environmental Research Center and the Department of Biological SciencesFlorida International UniversityMiamiUSA
  2. 2.Wetland Biogeochemistry Institute, Department of Oceanography and Coastal ScienceLouisiana State UniversityBaton RougeUSA

Personalised recommendations