, Volume 569, Issue 1, pp 311–324 | Cite as

Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves

  • Ken W. Krauss
  • Thomas W. Doyle
  • Robert R. Twilley
  • Victor H. Rivera-Monroy
  • Jason K. Sullivan


Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.


Avicennia germinans diameter increment flooding Laguncularia racemosa productivity Rhizophora mangle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspila, K. I., Agemian, H., Chau, S. Y. 1976A semi-automated method for determination of inorganic, organic and total phosphorus in sedimentsAnalyst101187197PubMedCrossRefGoogle Scholar
  2. Brown, S. L. 1981A comparison of the structure, primary productivity, and transpiration of cypress ecosystems in FloridaEcological Monographs51403427CrossRefGoogle Scholar
  3. Cahoon, D. R., Lynch, J. C. 1997Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.AMangroves and Salt Marshes1173186CrossRefGoogle Scholar
  4. Cattelino, P. J., Becker, C. A., Fuller, L. G. 1986Construction and installation of homemade dendrometer bandsNorthern Journal of Applied Forestry37375Google Scholar
  5. Chapman, V. J. 1976Mangrove VegetationJ. CramerVaduz, GermanyGoogle Scholar
  6. Chen, R., Twilley, R. R. 1998A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resourcesJournal of Ecology863752CrossRefGoogle Scholar
  7. Chen, R., Twilley, R. R. 1999Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, FloridaEstuaries22955970CrossRefGoogle Scholar
  8. Davis, S. E.,III, Childers, D. L., Day, J. W.,Jr., Rudnick, D. T., Sklar, F. H. 2001Wetland-water column exchanges of carbon, nitrogen, and phosphorus in a southern Everglades dwarf mangroveEstuaries24610622Google Scholar
  9. Day, R. H., 1990. Growth rates of three species of mangroves bordering Laguna de Términos, Campeche, Mexico. Thesis, The University of Texas, Austin TX.Google Scholar
  10. Delgado, P., Hensel, P. F., Jiménez, J. A., Day, J. W. 2001The importance of propagule establishment and physical factors in mangrove distributional patterns in a Costa Rican estuaryAquatic Botany71157178CrossRefGoogle Scholar
  11. Duever, M. J., Meeder, J. F., Meeder, L. C., McCollom, J. M. 1994The climate of south Florida and its role in shaping the Everglades ecosystemDavis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach FL225248Google Scholar
  12. Feller, I. C. 1995Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle)Ecological Monographs65477505CrossRefGoogle Scholar
  13. Hook, D. D. 1984aWaterlogging tolerance of lowland tree species of the southSouthern Journal of Applied Forestry8136149Google Scholar
  14. Hook, D. D. 1984bAdaptations to flooding with fresh waterKozlowski, T. T. eds. Flooding and Plant GrowthAcademic PressOrlando FL265294Google Scholar
  15. Keeley, J. E. 1979Population differentiation along a flood frequency gradient: physiological adaptations to flooding in Nyssa sylvatica Ecological Monographs4989108CrossRefGoogle Scholar
  16. Koch, M. S. 1996Resource availability and abiotic effects on Rhizophora mangle L. (Red Mangrove) development in South FloridaDissertation, University of MiamiCoral Gables FLGoogle Scholar
  17. Koch, M. S. 1997Rhizophora mangle L. seedling development into the sapling stage across resource and stress gradients in subtropical FloridaBiotropica29427439CrossRefGoogle Scholar
  18. Koch, M. S., Snedaker, S. C. 1997Factors influencing Rhizophora mangle L. seedling development in Everglades carbonate soilsAquatic Botany598798CrossRefGoogle Scholar
  19. Lahmann, E. J., 1988. Effects of different hydrological regimes on the productivity of Rhizophora mangle L.: a case study of mosquito control impoundments at Hutchinson Island, Saint Lucie County, Florida. Dissertation, University of Miami, Coral Gables FL.Google Scholar
  20. Lockwood, J. L., Ross, M. S., Sah, J. P. 2003Smoke on the water: the interplay of fire and water flow on Everglades restorationFrontiers in Ecology and the Environment1462468Google Scholar
  21. Lugo, A. E., Evink, G., Brinson, M. M., Broce, A., Snedaker, S. C. 1975Diurnal rates of photosynthesis, respiration, and transpiration in mangrove forests of south FloridaGolley, F. B.Medina, E. eds. Tropical Ecological SystemsSpringer-VerlagNew York NY335350Google Scholar
  22. McKee, K. L. 1995Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factorsOecologia101448460CrossRefGoogle Scholar
  23. McKee, K. L. 1996Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxiaTree Physiology16883889PubMedGoogle Scholar
  24. McKee, K. L., Feller, I. C., Popp, M., Wanek, W. 2002Mangrove isotopic (δ15N and δ13C) fractionation across nitrogen vs. phosphorus limitation gradientEcology8310651075Google Scholar
  25. McKnight, J. S., Hook, D. D., Langdon, O. G., Johnson, R. L. 1981Flood tolerance and related characteristics of trees of the bottomland forests of the southern United StatesClark, J. R.Benforado, J. eds. Wetlands of Bottomland Hardwood ForestsElsevierThe Netherlands2669Google Scholar
  26. Medina, E. 1999Mangrove physiology: the challenge of salt, heat, and light stress under recurrent floodingYáñez-Arancibia, A.Lara-Dominguez, A. L. eds. Mangrove Ecosystems in Tropical AmericaUICN/ORMA and NOAA/NMFSSilver Springs MD109126Google Scholar
  27. Megonigal, J. P., Conner, W. H., Kroeger, S., Sharitz, R. R. 1997Aboveground production in Southeastern floodplain forests: a test of the subsidy-stress hypothesisEcology78370384CrossRefGoogle Scholar
  28. Megonigal, J. P., Day, F. P. 1992Effects of flooding on root and shoot production of bald cypress in large experimental enclosuresEcology7311821193CrossRefGoogle Scholar
  29. Mitsch, W. J., Rust, W. G. 1984Tree growth responses to flooding in a bottomland forest in northeastern IllinoisForest Science30499510Google Scholar
  30. Naidoo, G., Rogalla, H., Willert, D. J. 1997Gas exchange responses of a mangrove species, Avicennia marina, to waterlogged and drained conditionsHydrobiologia3523947CrossRefGoogle Scholar
  31. Odum, E. P., Finn, J. T., Franz, E. H. 1979Perturbation theory and the subsidy-stress gradientBioScience29349352CrossRefGoogle Scholar
  32. Pezeshki, S. R., DeLaune, R. D., Patrick, W. H. 1990Differential response of selected mangroves to soil flooding and salinity: gas exchange and biomass partitioningCanadian Journal of Forest Research20869874Google Scholar
  33. Pezeshki, S. R., DeLaune, R. D., Meeder, J. F. 1997Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditionsEnvironmental and Experimental Botany37161171CrossRefGoogle Scholar
  34. Rivera-Monroy, V. H., Twilley, R. R. 1996The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico)Limnology and Oceanography41284296CrossRefGoogle Scholar
  35. Sherman, R. E., Fahey, T. J., Howarth, R. W. 1998Soil–plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamicsOecologia115553563CrossRefGoogle Scholar
  36. Smith, T. J.,III 1992Forest structureRobertson, A. I.Alongi, D. M. eds. Tropical Mangrove EcosystemsAmerican Geophysical UnionWashington DC101136Google Scholar
  37. Steever, E. Z., Warren, R. S., Niering, W. A. 1976Tidal energy subsidy and standing crop production of Spartina alterniflora Estuarine and Coastal Marine Science4473478CrossRefGoogle Scholar
  38. Twilley, R. R. 1985The exchange of organic carbon in basin mangrove forests in a southwest Florida estuaryEstuarine, Coastal and Shelf Science20543557CrossRefGoogle Scholar
  39. Twilley, R. R., Lugo, A. E., Patterson-Zucca, C. 1986Litter production and turnover in basin mangrove forests in southwest FloridaEcology67670683CrossRefGoogle Scholar
  40. Twilley, R. R., Chen, R. 1998A water budget and hydrology model of a basin mangrove forest in Rookery Bay, FloridaMarine and Freshwater Research49309323CrossRefGoogle Scholar
  41. Ende, C. N. 2001Repeated measures analysisScheiner, S. M.Gurevitch, J. eds. Design and Analysis of Ecological Experiments2Oxford University PressOxford, UK134157Google Scholar
  42. Zar, J. H. 1999Biostatistical Analysis4Prentice HallNew JerseyGoogle Scholar
  43. Watson, J. G. 1928Mangrove forests of the Malay PeninsulaMalayan Forest Records61275Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ken W. Krauss
    • 1
    • 2
  • Thomas W. Doyle
    • 1
  • Robert R. Twilley
    • 3
  • Victor H. Rivera-Monroy
    • 3
  • Jason K. Sullivan
    • 4
    • 5
  1. 1.National Wetlands Research CenterU.S. Geological SurveyLafayetteUSA
  2. 2.Center for Ecology and Environmental TechnologyUniversity of Louisiana at LafayetteLafayetteUSA
  3. 3.Wetland Biogeochemistry InstituteLouisiana State UniversityBaton RougeUSA
  4. 4.National Wetlands Research CenterIAP World Services, Inc.LafayetteUSA
  5. 5.Regulatory and Ecological Services GroupJohn Chance Land Surveys, Inc.LafayetteUSA

Personalised recommendations