Hydrobiologia

, Volume 569, Issue 1, pp 293–309 | Cite as

Rapid responses of vegetation to hydrological changes in Taylor Slough, Everglades National Park, Florida, USA

  • Thomas V. Armentano
  • Jay P. Sah
  • Michael S. Ross
  • David T. Jones
  • Hillary C. Cooley
  • Craig S. Smith
Article

Abstract

We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (“S332”) and its successor station (“S332D”). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.

Keywords

Everglades National Park Taylor Slough vegetation change hydrology water management restoration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armentano, T. V., D. T. Jones & B. W. Gamble, 2000. Recent patterns in the vegetation of Taylor Slough. In Proceedings of Greater Everglades Ecosystem Restoration Science Conference. Naples, FL. (Abstract), 187.Google Scholar
  2. Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., ter Braak, C. J. F 1990Diatoms and pH reconstructionPhilosophical Transactions of the Royal Society of London, Series B327263278Google Scholar
  3. Busch, D. E., Loftus, W. F., Bass, O. L.,Jr. 1998Long-term hydrologic effects on marsh plant community structure in the southern EvergladesWetlands18230241Google Scholar
  4. Childers, D. L., Jones, R. D., Trexler, J., Buzzelli, C., Dailey, S., Edwards, A. L., Gaiser, E., Jayachandaran, K., Lee, D., Meeder, J., Nair, M., Pechmann, J., Renshaw, A., Richards, J., Rugge, M., Scinto, L., Sterling, P., Gelder, W. 2002

    Quantifying the effects of low-level phosphorus enrichment on unimpacted Everglades wetlands with in situ flumes and phosphorus dosing

    Porter, K.Porter, J. eds. The Everglades HydroscapeSt. Lucie PressDelray Beach, Florida, USA127152
    Google Scholar
  5. Childers, D. L., Doren, R. F., Jones, R., Noe, G. B., Rugge, M., Scinto, L. J. 2003Decadal change in vegetation and soil phosphorus pattern across the Everglades landscapeJournal of Environmental Quality32344362PubMedCrossRefGoogle Scholar
  6. Clarke, K. R. 1993Non-parametric multivariate analyses of changes in community structureAustralian Journal of Ecology18117143Google Scholar
  7. Curnutt, J. L., Mayer, A. L., Brooks, T. M., Manne, L., Bass, O. L.,Jr., Fleming, D. M., Nott, M. P., Pimm, S. L. 1998Population dynamics of the endangered Cape Sable Seaside SparrowAnimal Conservation11121CrossRefGoogle Scholar
  8. Craft, C., Broome, S., Campbell, C. 2002Fifteen years of vegetation and soil development after brackish-water marsh creationRestoration Ecology10248258CrossRefGoogle Scholar
  9. Craighead, F. C. 1971The Trees of South Florida. Volume I. The Environments and Their SuccessionThe University of Miami PressCoral Gables, Florida, USA212Google Scholar
  10. David, P. G. 1996Changes in plant communities relative to hydrologic conditions in the Florida EvergladesWetlands161523CrossRefGoogle Scholar
  11. Davis, J. H., 1943. The natural features of southern Florida, Florida Geological Society. Geological Bulletin # 25: 311 pp.Google Scholar
  12. Davis, S. M., Gunderson, L. H., Park, W. A., Richardson, J. R., Matson, J. E. 1994

    Landscape dimension, composition, and function in a changing Everglades ecosystem

    Davis, S. M.Ogden, J. eds. Everglades: The Ecosystem and Its RestorationSt. Lucie PressDelray Beach, Florida, USA419444
    Google Scholar
  13. Doren, R. B., Armentano, T. V., Whiteaker, L. D., Jones, R. D. 1997Marsh vegetation patterns and soil phosphorous gradients in the Everglades ecosystemAquatic Botany56145163CrossRefGoogle Scholar
  14. Egler, F. 1952Southeast saline Everglades vegetation, Florida, and its managementVegetatio3213265CrossRefGoogle Scholar
  15. Gunderson, L. H. 1994

    Vegetation of the Everglades: determinants of community composition

    Davis, S. M.Ogden, J. eds. Everglades: The Ecosystem and Its RestorationSt. Lucie PressDelray Beach, Florida, USA323340
    Google Scholar
  16. Gunderson, L. H., Loftus, W. F. 1993

    The Everglades

    Martin, W. H.Boyce, S. G.Echternacht, A. G. eds. Biodiversity of the Southeastern United States/Lowland Terrestrial CommunitiesJohn Willey and SonsNew York, USA191255
    Google Scholar
  17. Herndon, A. L. & D. Taylor, 1986. Response of a Muhlenbergia-prairie to repeated burning: changes in above-ground biomass. Report # SFRC-86/05. South Florida Research Center, Everglades National Park, Homestead, Florida, USA, 77 pp.Google Scholar
  18. Herndon, A. L., Gunderson, H., Stenberg, J. R. 1991Sawgrass (Cladium jamaicense) survival in a regime of fire and floodingWetlands111727Google Scholar
  19. Hofstetter, R. H. & C. E. Hilsenbeck, 1980. Vegetational studies of the east Everglades. Final Report to Dade County Planning Department, East Everglades Resources Planning Project, 109 pp.Google Scholar
  20. Jensen, J. R., Rutchey, K., Koch, M. S., Narumalini, S. 1995Inland wetland change detection in the Everglades Water Conservation Area 2A using a time series of normalized remotely sensed dataPhotgrammetric Engineering & Remote Sensing61199209Google Scholar
  21. Juggins, S. 2003C2 User Guide. Software for Ecological and Palaeoecological Data Analysis and VisualizationUniversity of NewcastleNewcastle upon Tyne, UK69Google Scholar
  22. Kolipinski, M. C., Higer, A. L. 1969Some Aspects of the Effects of Quantity and Quality of Water on Biological Communities in Everglades National ParkOpen File Report, U. S. Geological SocietyTallahassee, Florida, USAGoogle Scholar
  23. Kruskal, J. B. 1964Nonmeteric multidimensional scaling: a numerical methodPsychometrika29127CrossRefGoogle Scholar
  24. Leach, S. D., Howard, K., Hampton, E. R. 1971Hydrologic Effects of Water Control and Management of Southeastern FloridaOpen File Report 71005. U. S. Geological SurveyTallahassee, Florida, USA193Google Scholar
  25. Lockwood, J. L., Ross, M. S., Sah, J. P. 2003Smoke on the water: The interplay of fire and water flow on Everglades restorationFrontiers in Ecology and the Environment1462468Google Scholar
  26. McCune, B., Grace, J. B. 2002Analysis of Ecological CommunitiesMjM Software DesignGleneden Beach, Oregon, USA300Google Scholar
  27. McCune, B., Mefford, M. J. 1999PC-ORD. Multivariate Analysis of Ecological Data. Version 4.0MjM SoftwareGleneden Beach, Oregon, USAGoogle Scholar
  28. McIvor, C. C., Ley, J. A., Bjork, R. D. 1994

    Changes in freshwater inflow from the Everglades to Florida bay including effects on biota and biotic processes: a review

    Davis, S. M.Ogden, J. eds. Everglades: The Ecosystem and Its RestorationSt. Lucie PressDelray Beach, Florida, USA117148
    Google Scholar
  29. Newman, S., Schuette, J., Grace, J. B., Rutchey, K., Fontaine, T., Reddy, K. R., Pietrucha, M. 1998Factors influencing cattail abundance in the northern EvergladesAquatic Botany60265280CrossRefGoogle Scholar
  30. Nott, M. P., Bass, O. L.,Jr., Fleming, D. M., Killeffer, S. E., Fraley, N., Manne, L., Curnutt, J. L., Brooks, T. M., Powell, R., Pimm, S. L. 1998Water levels, rapid vegetational changes, and the endangered Cape Sable Seaside SparrowAnimal Conservation12332CrossRefGoogle Scholar
  31. Olmsted, I.C, Loope, L. L., Rintz, R. E. 1980A Survey and Baseline Analysis of Aspects of the Vegetation of Taylor Slough. Report T-586South Florida Research CenterEverglades National Park, Homestead, Florida, USAGoogle Scholar
  32. Olmsted, I. C., Armentano, T. V. 1997Vegetation of Shark Slough, Everglades National Park. Technical Report # SFNRC 97–001South Florida Natural Resource CenterEverglades National Park, Homestead, Florida, USAGoogle Scholar
  33. Ponzio, K. J., Miller, S. J., Lee, M. A. 2004Long-term effects of prescribed fire on Cladium jamaicense crantz and Typha domingensis pers densitiesWetlands Ecology and Management12123133CrossRefGoogle Scholar
  34. Rose, P. W., Flora, M. D., Rosendahl, P. C. 1981Hydrologic Impacts of L-31(W) on Taylor Slough Everglades National Park. Report # T-612South Florida Research CenterEverglades National Park, Homestead, Florida, USAGoogle Scholar
  35. Ross, M. S., Meeder, J. F., Sah, J. P., Ruiz, P. L., Telesnicki, G. J. 2000The Southeast Saline Everglades revisited: 50 years of coastal vegetation changeJournal of Vegetation Science11101112CrossRefGoogle Scholar
  36. Ross, M. S., Reed, D. L., Sah, J. P., Ruiz, P. L., Lewin, M. T. 2003aVegetation: environment relationships and water management in Shark SloughEverglades National Park, Wetland Ecology and Management11291303CrossRefGoogle Scholar
  37. Ross, M. S., J. P. Sah, P. L. Ruiz, D. T. Jones, H. Cooley, R. Travieso, J. R. Snyder & C. Schaeffer, 2003b. Effect of hydrologic restoration on the habitat of the Cape Sable seaside sparrow: Annual report of 2002–2003, Submitted to Everglades National Park, Homestead, Florida, USA.Google Scholar
  38. Rudnick, D. T., Chen, Z., Childers, D. L., Boyer, J. N., Fontaine, T. D.,III 1999Phosphorus and Nitrogen inputs to Florida Bay: the importance of the Everglades WatershedEstuaries22398416CrossRefGoogle Scholar
  39. Ter Braak, C. J. F, Looman, C. W. N. 1995

    Regression

    Jongman, R. H. G.Ter Braak, C. J. FTongeren, O. F. R eds. Data Analysis in Community and Landscape EcologyCambridge University PressCambridge, UK2977
    Google Scholar
  40. US Army Corps of Engineers (USACE) & South Florida Water Management District (SFWMD), 1999. Central and Southern Florida Project Comprehensive Review Study: Final Integrated Feasibility Report and Programmatic Environmental Impact Statement. United States Army Corps of Engineers, Jacksonville District, Jacksonville, Florida, and South Florida Water Management District, West Palm Beach, Florida, USA.Google Scholar
  41. Lent, T., Johnson, R., Fennema, R. 1993Water Management in Taylor Slough and Effects on Florida Bay. Technical Report # SFNRC 93–03South Florida Natural Resource CenterEverglades National Park, Homestead, Florida, USAGoogle Scholar
  42. Lent, T. J., Snow, R. W., James, F. E. 1999An Examination of the Modified Water Deliveries Project, the C-111 Project, and the Experimental Water Deliveries Project: Hydrologic Analyses and Effects on Endangered SpeciesSouth Florida Natural Resource CenterEverglades National Park, Homestead, Florida, USAGoogle Scholar
  43. Wade, D., Ewel, J., Hofstetter, R. 1980Fire in South Florida Ecosystems. U. S. Forest Service General Technical Report SE-17Southeastern Forest Service Station, US Department of AgricultureAsheville, North Carolina, USAGoogle Scholar
  44. Warren, R. S., Fell, P. E., Rozsa, R., Brawley, A. H., Orsted, A. C., Olson, E. T., Swamy, V., Niering, W. A. 2002Salt marsh restoration in Connecticut: 20 years of science and managementRestoration Ecology10497513CrossRefGoogle Scholar
  45. Werner, H. & G. Woolfenden, 1983. The Cape Sable Sparrow: Its Habitat, Habits and History. In Wuay T. L., J. B. Funderburg Jr., D. S. Lee, E. F. Porter & C. S. Robbins (eds), The Seaside Sparrow: Its Biology and Management. North Carolina. Biological Survey and North Carolina. State Museum, Raleigh, North Carolina, USA, 55–75.Google Scholar
  46. Whittaker, R. H. 1972Evolution and the measurement of species diversityTaxon21213251CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Thomas V. Armentano
    • 1
  • Jay P. Sah
    • 2
  • Michael S. Ross
    • 2
  • David T. Jones
    • 2
  • Hillary C. Cooley
    • 3
  • Craig S. Smith
    • 3
  1. 1.Thomas V. ArmentanoLand O’ LakesUSA
  2. 2.Southeast Environmental Research Center (SERC)Florida International UniversityUniversity Park, MiamiUSA
  3. 3.Everglades National ParkHomesteadUSA

Personalised recommendations