Hydrobiologia

, Volume 569, Issue 1, pp 273–292 | Cite as

Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshes

  • Daniel L. Childers
  • David Iwaniec
  • Damon Rondeau
  • Gustavo Rubio
  • Emilie Verdon
  • Christopher J. Madden

Abstract

Aboveground net primary production (ANPP) by the dominant macrophyte and plant community composition are related to the changing hydrologic environment and to salinity in the southern Everglades, FL, USA. We present a new non-destructive ANPP technique that is applicable to any continuously growing herbaceous system. Data from 16 sites, collected from 1998 to 2004, were used to investigate how hydrology and salinity controlled sawgrass (Cladium jamaicense Crantz.) ANPP. Sawgrass live biomass showed little seasonal variation and annual means ranged from 89 to 639 gdw m−2. Mortality rates were 20–35% of live biomass per 2 month sampling interval, for biomass turnover rates of 1.3–2.5 per year. Production by C. jamaicense was manifest primarily as biomass turnover, not as biomass accumulation. Rates typically ranged from 300 to 750 gdw m−2 year−1, but exceeded 1000 gdw m−2 year−1 at one site and were as high as 750 gdw m−2 year−1 at estuarine ecotone sites. Production was negatively related to mean annual water depth, hydroperiod, and to a variable combining the two (depth-days). As water depths and hydroperiods increased in our southern Everglades study area, sawgrass ANPP declined. Because a primary restoration goal is to increase water depths and hydroperiods for some regions of the Everglades, we investigated how the plant community responded to this decline in sawgrass ANPP. Spikerush (Eleocharis sp.) was the next most prominent component of this community at our sites, and 39% of the variability in sawgrass ANPP was explained by a negative relationship with mean annual water depth, hydroperiod, and Eleocharis sp. density the following year. Sawgrass ANPP at estuarine ecotone sites responded negatively to salinity, and rates of production were slow to recover after high salinity years. Our results suggest that ecologists, managers, and the public should not necessarily interpret a decline in sawgrass that may result from hydrologic restoration as a negative phenomenon.

Keywords

Everglades LTER ANPP sawgrass hydrology restoration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo, M. F., Raventós, J. 2002Growth dynamics of three tropical savanna grass species: An individual-module modelEcological Modelling1544560CrossRefGoogle Scholar
  2. Aerts, R., Verhoeven, J. T. A., Whigham, D. F. 1999Plant-mediated controls on nutrient cycling in temperate fens and bogsEcology8021702181CrossRefGoogle Scholar
  3. Amador, J. A., Richany, G. H., Jones, R. D. 1992Factors affecting phosphate uptake by peat soils of the Florida EvergladesSoil Science153463470Google Scholar
  4. Brandt, L. A., Portier, K. M., Kitchens, W. M. 2000Patterns of change in tree islands in Arthur R. Marshall Loxachatchee National Wildlife Refuge from 1950–1991Wetlands20114CrossRefGoogle Scholar
  5. Burke, I. C., Lauenroth, W. K., Parton, W. J. 1997Regional and temporal variation in net primary production and nitrogen mineralization in grasslandsEcology7813301340CrossRefGoogle Scholar
  6. Childers, D. L., Doren, R. F., Jones, R., Noe, G. B., Rugge, M., Scinto, L. J. 2003Decadal change in vegetation and soil phosphorus patterns across the Everglades landscapeJ. Environ. Quality32344362CrossRefGoogle Scholar
  7. Childers, D. L., Boyer, J. N., Davis, S. E., Madden, C. J., Rudnick, D. T., Sklar, F. H. 2006Nutrient concentration patterns in the oligotrophic “upside-down” estuaries of the Florida EvergladesLimnology & Oceanography51602616CrossRefGoogle Scholar
  8. Costanza, R. 1980Embodied energy and economic valuationScience21012191224PubMedGoogle Scholar
  9. Dai, T., Weigert, R. G. 1996Ramet population dynamics and net aerial primary productivity of Spartina alternifloraEcology77276288CrossRefGoogle Scholar
  10. Daoust, R., Childers, D. L. 1998Quantifying aboveground biomass and estimating productivity in nine Everglades wetland macrophytes using a non-destructive allometric approachAquatic Botany62115133CrossRefGoogle Scholar
  11. Daoust, R., Childers, D. L. 2004Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystemOecologia141672686PubMedCrossRefGoogle Scholar
  12. David, P. G. 1996Changes in plant communities relative to hydrologic conditions in the Florida EvergladesWetlands161523CrossRefGoogle Scholar
  13. Davis, S. M., 1989. Sawgrass and cattail production in relation to nutrient supply in the Everglades. In: Sharitz, R. R. & J. W. Gibbons (eds), Freshwater Wetlands and Wildlife. DOE Symposium Series No. 61, Oak Ridge, TN: 325–341.Google Scholar
  14. Davis, S. M., Ogden, J. C. 1994Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach FLGoogle Scholar
  15. Davis, S. M., Gunderson, L. H., Park, W. A., Richardson, J. R., Mattson, J. E. 1994

    Landscape dimension, composition, and function in a changing Everglades Ecosystem

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach FL419444
    Google Scholar
  16. Leeuw, J., Wielemaker, A., Munck, W., Herman, P. M. J. 1996net aerial primary production (NAPP) of the marsh macrophyte Scirpus maritimus estimated by a combination of destructive and non-destructive sampling methodsVegetatio123101108CrossRefGoogle Scholar
  17. Dickerman, J. A., Steward, A. J., Wetzel, R. G. 1986Estimates of net annual aboveground production: Sensitivity to sampling frequencyEcology67650659CrossRefGoogle Scholar
  18. Duever, M. J., Meeder, J. F., Meeder, L. C., McCollom, J. M. 1994

    The climate of South Florida and its role in shaping the Everglades ecosystem

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, Florida, USA225248
    Google Scholar
  19. Egler, F. E. 1952Southeast saline Everglades vegetation, FL, and its managementVegetatio3213265CrossRefGoogle Scholar
  20. Epstein, H. E., Burke, I. C., Lauenroth, W. K. 2002Regional patterns of decomposition and primary production rates in the U.S. Great PlainsEcology83320327Google Scholar
  21. Ewing, K. 1986Plant growth and productivity along complex gradients in a Pacific northwest brackish marshEstuaries94962CrossRefGoogle Scholar
  22. Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandran, K., Childers, D. L., Trexler, J. C., Jones, R. D. 2004Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetlandWater Res.38507516PubMedCrossRefGoogle Scholar
  23. Gunderson, L. 1994

    Vegetation of the Everglades: determinants of community composition

    Davis, S. M.Ogden, J. C. eds. Everglades: The ecosystem and its restorationDelray Beach (USA), St. Lucie PressDelray Beach FL323340
    Google Scholar
  24. Hopkinson, C. S., Gosselink, J. G., Parrondo, R. T. 1980Production of coastal Louisiana marsh plants calculated from phenometric techniquesEcology6110911098CrossRefGoogle Scholar
  25. Hsieh, Y. P. 1996Assessing aboveground net primary production of vascular plants in marshesEstuaries198285CrossRefGoogle Scholar
  26. Jobbágy, E. G., Sala, O. E. 2000Controls of grass and shrub aboveground production in the Patagonian SteppeEcological Applications10541549CrossRefGoogle Scholar
  27. Koch, M. S., Reddy, K. R. 1992Distribution of soil and plan nutrients along a trophic gradient in the Florida EvergladesSoil Science Society of America Journal5614921499CrossRefGoogle Scholar
  28. Knapp A. K., J. M. Briggs & D. L. Childers, 2006. Estimating aboveground net primary production in grassland and herbaceous dominated ecosystems. In Fahey, T. J. & A. K. Knapp (eds), Principles and Standards for Measuring Net Primary Production in Long-Term Ecological Studies (in press).Google Scholar
  29. Light, S. S., Dineen, J. W. 1994

    Water control in the Everglades: a historical perspective

    Davis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and Its RestorationDelray Beach (USA), St. Lucie PressDelray Beach FL4784
    Google Scholar
  30. Loveless, C. M. 1959A study of the vegetation in the Florida EvergladesEcology4019CrossRefGoogle Scholar
  31. McCormick, P. V., Rawlik, P. S., Lurding, K., Smith, E. P., Sklar, F. H. 1996Periphyton-water quality relationships along a nutrient gradient in the northern Florida EvergladesJournal of the North American Benthological Society48433449CrossRefGoogle Scholar
  32. McVoy, C., & E. Crisfield, 2001. The role of water and sediment flows in the ridge and slough landscape. SFWMD Internal Report, West Palm Beach, FL, USA.Google Scholar
  33. Medeiros des Santos, A., A. Esteves, F. 2002Primary production and mortality of Eleocharis interstincta in response to water level fluctuationsAquatic Botany74189199CrossRefGoogle Scholar
  34. Mendelssohn, I. A., & J. T. Morris, 2000. In Weinstein M. P., & D. Q. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic, The Netherlands: pp. 273–294.Google Scholar
  35. Milner, C.Hughes, R. E. eds. 1968Methods for the Measurement of Primary Production of GrasslandsIBP Handbook No. 6, Blackwell Scientific PublicationsOxford, UKGoogle Scholar
  36. Mitsch, W., & J. G. Gosselink, 2000. Wetlands, 3rd edn.Google Scholar
  37. Morris, J. T., Haskin, B. 1990A 5-yr record of aerial primary production and stand characteristics of Spartina alternifloraEcology7122092217CrossRefGoogle Scholar
  38. Neill, C. 1993Seasonal flooding, soil salinity, and primary production in norther prairie marshesOecologia95499505Google Scholar
  39. Newman, S., Grace, J. B., Koebel, J. W. 1996Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: Implications for Everglades RestorationEcological Applications6774483CrossRefGoogle Scholar
  40. Noe, G., Childers, D. L., Jones, R. D. 2001Phosphorus biogeochemistry and the impacts of phosphorus enrichment: Why are the Everglades so uniqueEcosystems4603624CrossRefGoogle Scholar
  41. Parker, F. M. III, 2000. Changes in water inputs and nutrient loading after restoration of water flow to a Southern Everglades wetland landscape. MS Thesis, Florida International University, Miami, FL, 128 pp.Google Scholar
  42. Pezeshki, S. R., DeLaune, R. D. 1991A comparative study of aboveground productivity of dominant U.S. Gulf Coast marsh speciesJournal of Vegetation Science2331338CrossRefGoogle Scholar
  43. Richards, J. H. 2002Flower and spikelet morphology in sawgrass, Cladium jamaicense CranzAnnals of Botany90361367PubMedCrossRefGoogle Scholar
  44. Ross, M. S., Meeder, J. F., Sah, J. P., Ruiz, P. L., Telesnicki, G. J. 2000The southeast saline Everglades revisited: 50 years of coastal vegetation changeJ. Vegetation Science11101112CrossRefGoogle Scholar
  45. Rudnick, D. T., Chen, Z., Childers, D. L., Boyer, J. N., Fontaine, T. D.,III 1999Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershedEstuaries22398416CrossRefGoogle Scholar
  46. Scurlock, J. M. O., Johnson, K., Olson, R. J. 2002Estimating net primary productivity from grassland biomass dynamics measurementsGlobal Change Biology8736753CrossRefGoogle Scholar
  47. Singh, J. S., Lauenroth, W. K., Steinhorst, R. K. 1975Review and assessment of various techniques for estimating net aerial primary production in grasslands from harvest dataBotanical Review41181232CrossRefGoogle Scholar
  48. Sklar, F. H., Valk, A. 2003Tree islands of the EvergladesKluwer Academic PublishersBoston, MA, USA437Google Scholar
  49. Smalley, A. E. 1959, The role of two invertebrate populations, Littorina irrorata and Orchelimum fidicinum in the energy flow of a salt marsh ecosystem. Ph.D. Thesis, Univ. Georgia, Athens, GA, USA.Google Scholar
  50. Snyder, J. M., Richards, J. H. 2005Floral phenology and compatibility of sawgrass, Cladium jamaicense (Cyperaceae)American Journal of Botany92738745Google Scholar
  51. Steward, K. K., Ornes, W. H. 1975The autecology of sawgrass in the Florida EvergladesEcology56162171CrossRefGoogle Scholar
  52. Tilman, D. 1994Competition and biodiversity in spatially structured habitatsEcology75216CrossRefGoogle Scholar
  53. Twilley, R. R., Chen, R. H., Hargis, T. 1992Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystemsWater, Air, and Soil Pollution64265288CrossRefGoogle Scholar
  54. Urban, N. H., Davis, S. M., Aumen, N. G. 1993Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic, and fire regimesAquatic Botany46203223CrossRefGoogle Scholar
  55. Walker, W. W.,Jr. 1999

    Long-term water quality trends in the Everglades

    Reddy, K. R.O’Connor, G. A.Schelske, C. L. eds. Phosphorus Biogeochemistry in Subtropical EcosystemsLewis PublishersBoca Raton, Florida, USA447466
    Google Scholar
  56. Wiegert, R. G., Evans, F. C. 1964Primary production and the disappearance of dead vegetation on an old field in southeastern MichiganEcology454963CrossRefGoogle Scholar
  57. Wu, , Wu, Y., Sklar, F. H., Rutchey, K. 1997Analysis and simulations of fragmentation patterns in the EvergladesEcological Applications7268276CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Daniel L. Childers
    • 1
  • David Iwaniec
    • 1
  • Damon Rondeau
    • 1
  • Gustavo Rubio
    • 1
    • 3
  • Emilie Verdon
    • 1
  • Christopher J. Madden
    • 2
  1. 1.Department of Biological Sciences & SERCFlorida International UniversityMiamiUSA
  2. 2.Coastal Ecosystems DivisionSouth Florida Water Management DistrictWest Palm BeachUSA
  3. 3.U.S. Environmental Protection AgencyWashingtonUSA

Personalised recommendations