Hydrobiologia

, Volume 569, Issue 1, pp 223–235 | Cite as

Effects of hydrologic and water quality drivers on periphyton dynamics in the southern Everglades

  • David M. Iwaniec
  • Daniel L. Childers
  • Damon Rondeau
  • Christopher J. Madden
  • Colin Saunders
Article

Abstract

Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.

Keywords

periphyton hydrology water quality phosphorus Everglades 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armentano, T. V., D. T. Jones, M. S. Ross & B. W. Gamble, 2002. Vegetation pattern and process in tree islands of the southern Everglades and adjacent areas. In van der Valk, A. & F. H. Sklar (eds), Tree Islands of the Everglades. Kluwer Academic Publishers, 225–281.Google Scholar
  2. Browder, J. A., Gleason, P. J., Swift, D. R., Davis, S. M., Ogden, J. C. 1994Periphyton in the Everglades: Spatial Variation Environmental Correlates, and Ecological Implications. Everglades the Ecosystem and its RestorationSt. Lucie PressDelray Beach, Florida379418Google Scholar
  3. Childers, D. L., Boyer, J. N., Davis, S. E.,III, Madden, C. J., Rudnick, D. T., Sklar, F. H. 2006Relating precipitation and water management to nutrient concentrations in the oligotrophic ‘‘upside-down’’ estuaries of the Florida EvergladesLimnology and Oceanography51602616CrossRefGoogle Scholar
  4. Davis, S. M., 1982. Patterns of Radiophosphorus in the Everglades after its Introduction into Surface Water. South Florida Water Management District, West Palm Beach.Google Scholar
  5. Davis, S. M., Ogden, J. C. 1994Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach826Google Scholar
  6. Duever, M. J., Meeder, J. F., Meeder, L. C., McCollom, J. M. 1994

    The climate of South Florida and its role in shaping the Everglades ecosystem

    Davis, S. M.Ogden, J. C. eds. The Ecosystem and its RestorationSt. Lucie PressDelray Beach225248
    Google Scholar
  7. Ewe, S. M. L., Gaiser, E. E., Childers, D. L., Iwaniec, D., Rivera-Monroy, V. H., Twilley, R. R. 2006Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater estuarine transects in the Florida Coastal EvergladesHydrobiologia569459474Google Scholar
  8. Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandran, K., Childers, D. L., Trexler, J. C., Jones, R. D. 2004Phosphorus in periphyton mats provides the best metric for detecting low-depth P enrichment in an oligotrophic wetlandWater Research38507516PubMedCrossRefGoogle Scholar
  9. Gaiser, E. E., Trexler, J. C., Richards, J. H., Childers, D. L., Lee, D., Edwards, A. L., Scinto, L. J., Jayachandran, K., Noe, G. B., Jones, R. D. 2005aCascading ecological effects of low-depth phosphorus enrichment in the Florida EvergladesJournal of Environmental Quality34717723CrossRefGoogle Scholar
  10. Gaiser, E. E., Richards, J., Trexler, J., Jones, R., Childers, D. L. 2005bPeriphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional changeLimnology and Oceanography50342355Google Scholar
  11. Goldsborough, L. M. & G. G. Robinson, 1996. Patterns in wetlands. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, 77–117.Google Scholar
  12. McCormick, P. V., O’Dell, M. B. 1996Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approachJournal of the North American Benthological Society15450468CrossRefGoogle Scholar
  13. McCormick, P. V. & L. J. Scinto, 1999. Influence of phos-phorus loading on wetland periphyton assemblages: a case study from the Everglades. In Reddy, K. R., G. A. O’Connor & C. L. Schelske (eds), Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Press, 301–320.Google Scholar
  14. McCormick, P. V., Chimney, M. J., Swift, D. R. 1997Diel oxygen profiles and water column community metabolism in the Florida Everglades, U.S.AArchiv für Hydrobiologie140117129Google Scholar
  15. McCormick, P. V., Shuford, R. B. E.,III, Backus, J. G., Kennedy, W. C. 1998Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.AHydrobiologia362185210CrossRefGoogle Scholar
  16. Mitsch, W. J., Gosselink, J. G. 2000WetlandsJohn Wiley, Sons, IncNew York920Google Scholar
  17. Noe, G. B., Childers, D. L., Jones, R. D. 2001Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the everglades so unique?Ecosystems4603624CrossRefGoogle Scholar
  18. Noe, G. B., Scinto, L. J., Taylor, J., Childers, D. L., Jones, R. D. 2003Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing studyFreshwater Biology4819932008CrossRefGoogle Scholar
  19. Noe, G. B., Childers, D. L., Edwards, A. L., Gaiser, E., Jayachandran, K., Lee, D., Meeder, J., Richards, J., Scinto, L. J., Trexler, J. C., Jones, R. D. 2002Short-term changes in phosphorus storage in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichmentBiogeochemistry59239267CrossRefGoogle Scholar
  20. Parker, F. M.,III 2000Changes in Water Inputs and Nutrient Loading after Restoration of Water Flow to a Southern Everglades Wetland LandscapeDepartment of Biological Sciences, Florida International UniversityMiami128Google Scholar
  21. Radar, R. B., Richardson, C. J. 1992The effects of nutrient enrichment on algae and macroinvertebrates in the Everglades: a reviewWetlands12121135CrossRefGoogle Scholar
  22. Rejmánková, E., Komárková, J. 2000A function of cyanbacterial mats in phosphorus-limited tropical wetmandsHydrobiologia431135153CrossRefGoogle Scholar
  23. Ross, M. S., Meeder, J. F., Sah, J. P., Ruiz, P. L., Telesnicki, G. J. 2000The southeast saline Everglades revisited: 50 years of coastal vegetation changeJournal of Vegetation Science11101112CrossRefGoogle Scholar
  24. Rudnick, D. T., Chen, Z., Childers, D. L., Boyer, J. N., Fontaine, T. D.,III 1999Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershedEstuaries22398416CrossRefGoogle Scholar
  25. Saravia, L. A., Momo, F., Boffi Lissin, L. D. 1998Modelling periphyton dynamics in running waterEcological Modelling1143547CrossRefGoogle Scholar
  26. Sklar, F., C. McVoy, R. VanZee, K. Gawlik, D. Tarboton, D. Rudnick & S. Miao, 2002. The effects of altered hydrology on the ecology of the Everglades. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, 39–82.Google Scholar
  27. Solorzano, L., Sharp, J. H. 1980Determination of total dissolved phosphorus and particulate phosphorus in natural watersLimnology and Oceanography25754758Google Scholar
  28. Turner, A. M., Trexler, J. C., Jordan, C. F., Slack, S. J., Geddes, P., Chick, J. H., Loftus, W. F. 1999Targeting ecosystem features for conservation: standing crops in the florida evergladesConservation Biology13898911CrossRefGoogle Scholar
  29. Meter-Kasanof, N. 1973Ecology of the microalgae of the Florida Everglades. Part I. Environment and some aspects of freshwater periphyton, 1959 to 1963Nova hedwigia24619664Google Scholar
  30. Vymazal, J., Craft, C. B., Richardson, C. J. 1994Periphyton response to nitrogen and phosphorus additions in Florida EvergladesAlgological Studies737597Google Scholar
  31. Wetzel, R. G. 1990Land–water interfaces: metabolic and limnological regulatorsInternationale Vereinigung fuer Theoretische und Angewandte Limnologie Verhandlungen24624Google Scholar
  32. Wetzel, R. G. 1993Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism, and high sustained aquatic primary productionNetherlands Journal of Aquatic Ecology2739CrossRefGoogle Scholar
  33. Wood, E. J. F., Maynard, N. G. 1974

    Ecology of the micro-algae of the Florida Everglades

    Gleason, P. J. eds. Environments of South Florida: Past and Present, Memoir No. 2Miami Geological SocietyCoral Gables123145
    Google Scholar
  34. Wu, Y., Sklar, F. H., Rutchey, K. 1997Analysis and simulations of fragmentation patterns in the EvergladesEcological Applications7268276CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • David M. Iwaniec
    • 1
  • Daniel L. Childers
    • 1
  • Damon Rondeau
    • 1
  • Christopher J. Madden
    • 2
  • Colin Saunders
    • 1
  1. 1.Department of Biological Sciences & SERCFlorida International UniversityMiamiUSA
  2. 2.Coastal Ecosystems DivisionSouth Florida Water Management DistrictWest Palm BeachUSA

Personalised recommendations