Hydrobiologia

, Volume 569, Issue 1, pp 209–221 | Cite as

Effects of shading on calcareous benthic periphyton in a short-hydroperiod oligotrophic wetland (Everglades, FL, USA)

  • Serge Thomas
  • Evelyn E. Gaiser
  • Franco A. Tobias
Article

Abstract

The effects of shade on benthic calcareous periphyton were tested in a short-hydroperiod oligotrophic subtropical wetland (freshwater Everglades). The experiment was a split-plot design set in three sites with similar environmental characteristics. At each site, eight randomly selected 1-m2 areas were isolated individually in a shade house, which did not spectrally change the incident irradiance but reduced it quantitatively by 0, 30, 50, 60, 70, 80, 90 and 98%. Periphyton mat was sampled monthly under each shade house for a 5 month period while the wetland was flooded. Periphyton was analyzed for thickness, DW, AFDW, chlorophyll a (chl a) and incubated in light and dark BOD bottles at five different irradiances to assess its photosynthesis–irradiance (PI) curve and respiration. The PI curves parameters Pmax, Ik and eventually the photoinhibition slope (β) were determined following non-linear regression analyses. Taxonomic composition and total algal biovolume were determined at the end of the experiment. The periphyton composition did not change with shade but the PI curves were significantly affected by it. Ik increased linearly with increasing percent irradiance transmittance (%IT = 1−%shade). Pmax could be fitted with a PI curve equation as it increased with %IT and leveled off after 10%IT. For each shade level, the PI curve was used to integrate daily photosynthesis for a day of average irradiance. The daily photosynthesis followed a PI curve equation with the same characteristics as Pmax vs. %IT. Thus, periphyton exhibited a high irradiance plasticity under 0–80% shade but could not keep up the same photosynthetic level at higher shade, causing a decrease in daily GPP at 98% shade levels. The plasticity was linked to an increase in the chl a content per cell in the 60–80% shade, while this increase was not observed at lower shade likely because it was too demanding energetically. Thus, chl a is not a good metric for periphyton biomass assessment across variously shaded habitats. It is also hypothesized that irradiance plasticity is linked to photosynthetic coupling between differently comprised algal layers arranged vertically within periphyton mats that have different PI curves.

Keywords

periphyton algae shade photosynthesis–irradiance Everglades wetlands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloi, J. E. 1990A critical review of recent freshwater periphyton field methodsCanadian Journal of Fisheries and Aquatic Sciences47656670CrossRefGoogle Scholar
  2. Al-Rabai’ah, H. A., Koh, H. L., DeAngelis, D., Lee, H. L. 2002Modeling fish community dynamics in the Florida Everglades: role of temperature variationWater Science and Technology467178PubMedGoogle Scholar
  3. APHA, 1999. Standard Methods for the Examination of Water and Wastewater. EPA Methods for Chemical Analysis of Water and Wastes. Revised edition. March 1983, 1220 pp.Google Scholar
  4. Armentano, T. V., Sah, J. P., Ross, M. S., Jones, D. T., Cooley, H. C., Smith, C. S. 2006Rapid responses of vegetation to hydrological changes in Taylor Slough, Everglades National Park, Florida, USAHydrobiologia569293309Google Scholar
  5. Davis, S. M., Loftus, W. F., Gaiser, E. E., Huffman, A. E. 2005Southern marl prairies conceptual ecological modelWetlands25821831Google Scholar
  6. Davison, I. R. 1991Environmental effects on algal photosynthesis: temperatureJournal of Phycology2728CrossRefGoogle Scholar
  7. Dodds, W. K., Biggs, B. J. F., Lowe, R. L. 1999Photosynthesis–irradiance patterns in benthic microalgae: variations as a function of assemblage thickness and community structureJournal of Phycology354253CrossRefGoogle Scholar
  8. Donar, C. M., Condon, K. W., Gantar, M., Gaiser, E. E. 2004A new technique for examining the physical structure of Everglades floating periphyton matNova Hedwigia78107119CrossRefGoogle Scholar
  9. Falkowski, P. G., LaRoche, J. 1991Acclimation to spectral irradiance in algaeJournal of Phycology27814CrossRefGoogle Scholar
  10. Ferris, J. M., Christian, R. 1991Aquatic primary production in relation to microalgal responses to changing irradianceAquatic Sciences53187217CrossRefGoogle Scholar
  11. Franken, R. J. M., Waluto, B., Peeters, E. T. H., Gardeniers, J. J. P., Beijer, J. A. J., Scheffer, M. 2005Growth of shredders on leaf litter biofilms: the effect of irradiance intensityFreshwater Biology50459466CrossRefGoogle Scholar
  12. Garcia-Pichel, F., Pringault, O. 2001Cyanobacteria track in desert soilsNature413380381PubMedCrossRefGoogle Scholar
  13. Geddes, P., Trexler, J. C. 2003Uncoupling of omnivore-mediated positive and negative effects on periphyton matsOecologia136585595PubMedCrossRefGoogle Scholar
  14. Goldsborough, L. G. 1994Heterogeneous spatial distribution of periphytic diatoms on vertical artificial substrataJournal of North American Benthological Society13223236CrossRefGoogle Scholar
  15. Grimshaw, H. J., Wetzel, R. G., Brandenburg, M., Segerblom, K., Wenkert, L. J., Marsh, G. A., Charnetzky, W., Haky, J. E., Carraher, C. 1997Shading of periphyton communities by wetland emergent macrophytes: decoupling of algal photosynthesis from microbial nutrient retentionArchiv für Hydrobiologie1391727Google Scholar
  16. Han, B. -P., Virtanen, M., Koponen, J., Straškraba, M. 2000Effect of photoinhibition on algal photosynthesis: a dynamic modelJournal of Plankton Research22865885CrossRefGoogle Scholar
  17. Hansson, L. A. 1992Factors regulating periphytic algal biomassLimnology and Oceanography37322328Google Scholar
  18. Hansson, L. A. 1988Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakesLimnology and Oceanography33121128Google Scholar
  19. Hansson, L. A. 1989The influence of a periphytic biolayer on phosphorus exchange between substrate and waterArchiv für Hydrobiologie1152126Google Scholar
  20. Hansson, L. A. 1990Quantifying the impact of periphytic algae on nutrient availability for phytoplanktonFreshwater Biology24265273CrossRefGoogle Scholar
  21. Hawes, I. 1993Photosynthesis in thick cyanobacterial films: a comparison of annual and perennial antarctic mat communitiesHydrobiologia252203209CrossRefGoogle Scholar
  22. Hill, W. R. 1996

    Factors affecting benthic algae – effects of irradiance

    Stevenson, R. J.Bothwell, M. L.Lowe, R. L. eds. Algal Ecology – Freshwater Benthic EcosystemsAcademic PressSan Diego, USA121148
    Google Scholar
  23. Hill, W. R., Knight, A. W. 1988Nutrient and irradiance limitation of algae in two northern California streamsJournal of Phycology24125132Google Scholar
  24. Jeffrey, S. W., Humphrey, G. F. 1975New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae, and natural phytoplanktonBiochemie und Physiologie der Pflanzen167191194Google Scholar
  25. Johnson, R. E., Tuchman, N. C., Peterson, C. G. 1997Changes in the vertical microdistribution of diatoms within a developing periphyton matJournal of North American Benthological Society16503519CrossRefGoogle Scholar
  26. Jones, R. D., Amador, J. A. 1992Removal of total phosphorus and phosphate by peat soils of the Florida EvergladesCanadian Journal of Fisheries and Aquatic Sciences49577583Google Scholar
  27. Kirk, J. T. O. 1983Light and Photosynthesis in Aquatic EcosystemsCambridge Univ. PressCambridge, UK401Google Scholar
  28. Kirk, R. E., 1995. Experimental Design. Brooks/Cole, Pacific Grove USA, 944 pp.Google Scholar
  29. Komárek, J., Hindak, F. 1975Taxonomy of new isolated strains of Chroococcidiopsis (Cyanophyceae)Archiv für Hydrobiologie46(Suppl)311329Google Scholar
  30. Komárek, J., Anagnostidis, K. 1986Modern approach to the classification system of cyanobacteria 2: ChroococcalesAlgology Studies43157226Google Scholar
  31. Komárek, J., Anagnostidis, K. 1989Modern approach to the classification system of cyanobacteria 4: NostocalesAlgology Studies56247345Google Scholar
  32. Komárek, J., Anagnostidis, K. 1999

    Cyanoprokaryota. I. Teil Chlorococcales

    Ettl, H.Gärtner, G.Heynig, H.Mollenhauer, D. eds. Süßwasserflora von MitteleuropaGustav FischerStuttgart, Germany13145
    Google Scholar
  33. Lang, S., Austin, A. 1984Vertical distribution of biomass and species composition of a periphytic community on an artificial substrate in an oligotrophic water-supply lakeArchiv für Hydrobiologie99269286Google Scholar
  34. Langdon, C. 1988On the causes of interspecific differences in the growth–irradiance relationship for phytoplankton II A general reviewJournal of Plankton Research1012911312Google Scholar
  35. Losee, R. F., Wetzel, R. G. 1983Selective irradiance attenuation by the periphyton complexDevelopment and Hydrobiology178996Google Scholar
  36. Lowe, R. L., Golladay, S. W., Webster, J. R. 1986Periphyton response to nutrient manipulation in streams draining clearcut and forested watershedsJournal of North American Benthological Society5221229CrossRefGoogle Scholar
  37. McBride, G. B. 1992Simple calculation of daily photosynthesis by means of five photosynthesis–irradiance equationsLimnology and Oceanography3717961808CrossRefGoogle Scholar
  38. MacIntyre, H. L., Cullen, J. J. 1995Fine-scale vertical resolution of chlorophyll and photosynthetic parameters in shallow-water benthosMarine Ecology-Progress Series122227237Google Scholar
  39. McCormick, P. V., Shuford, R. B. E.,III, Backus, J. G., Kennedy, W. C. 1998Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USAHydrobiologia362185208CrossRefGoogle Scholar
  40. McCormick, P. V., Chimney, M. J., Swift, D. R. 1997Diel oxygen profiles and water column community metabolism in the Florida Everglades, USAArchiv für Hydrobiologie140117129Google Scholar
  41. Meulemans, J. T. 1987A method for measuring selective irradiance attenuation within a periphytic communityArchiv für Hydrobiologie109139145Google Scholar
  42. Mosisch, T. D., Bunn, S. E., Davies, P. M. 2001The relative importance of shading and nutrients on algal production in subtropical streamsFreshwater Biology4612691278CrossRefGoogle Scholar
  43. Müller, U. 1995Vertical zonation and production rates of epiphytic algae on Phragmites australisFreshwater Biology346980CrossRefGoogle Scholar
  44. Noe, G. B., Childers, D. L., Jones, R. D. 2001Phosphorus biogeochemistry and the impact of phosphorus enrichment: why the Everglades is so unique?Ecosystems4603624CrossRefGoogle Scholar
  45. Platt, T., Gallegos, C. L., Harrison, W. G. 1980Photoinhibition in natural assemblages of marine phytoplanktonJournal of Marine Research38687701Google Scholar
  46. Prescott, G. W., 1962. Algae of the Western Great Lakes Area (revised edition) Wm. C. Brown, Co. Dubuque, Iowa, USA, 977 pp.Google Scholar
  47. Quinn, J. M., Cooper, A. B., Stroud, M. J., Burrell, G. P. 1997Shade effects on stream periphyton and invertebrates: an experiment in streamside channelsNew Zealand Journal of Marine and Freshwater Research31665683Google Scholar
  48. Sand-Jensen, K., Borum, J. 1991Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuariesAquatic Botany41137175CrossRefGoogle Scholar
  49. Steinman, A. D., McIntire, C. D., Gregory, S. V., Lamberti, G. A. 1989Effects of irradiance and grazing on lotic algal assemblagesJournal of Phycology25478485Google Scholar
  50. Thomas, S., 2000. The different primary producers in a small African tropical reservoir: dynamics and interactions (Brobo, Côte-d’Ivoire) Ph.D. thesis, Paris 6 University Paris (France).Google Scholar
  51. Thomas, S., Gaiser, E. E., Gantar, M., Scinto, L. J., Jones, R. D. 2006Quantifying the responses of calcareous periphyton crusts to rehydration: a microcosm study (Florida Everglades)Aquatic Botany84317323CrossRefGoogle Scholar
  52. Thomas, S., Gaiser, E. E., Gantar, M., Pinowska, A., Scinto, L. J., Jones, R. D. 2002Growth of calcareous epilithic mats in the margin of the natural and polluted hydrosystems: phosphorus removal implications in the C-111 basin, Florida Everglades, USALake Reservation Management18324330CrossRefGoogle Scholar
  53. Towns, D. R. 1981Effects of artificial shading on periphyton and invertebrates in a New Zealand streamNew Zealand Journal of Marine and Freshwater Research15185192CrossRefGoogle Scholar
  54. Web, W. L., Newton, M., Starr, D. 1974Carbon dioxide exchange of Alnus rubra: a mathematical modelOecologia17281291CrossRefGoogle Scholar
  55. Welsch, R. E. 1977Stepwise multiple comparison proceduresJournal of American Statistical Association72359CrossRefGoogle Scholar
  56. Wellnitz, T., Rader, R. B. 2003Mechanisms influencing community composition and succession in mountain stream periphyton: interactions between scouring history, grazing, and irradianceJournal of North American Benthological Society22528541Google Scholar
  57. Wetzel, R. G. 1996

    Benthic algae and nutrient cycling in lentic freshwater ecosystems

    Stevenson, R. J.Bothewell, M. L.Lowe, R. L. eds. Benthic Algal EcologyAcademic PressLondon, U.K641667
    Google Scholar
  58. Zimmerman, R. C., Beeler SooHoo, J., Kremer, J. N., D’Argenio, D. Z. 1987Evaluation of variance approximation techniques for non-linear photosynthesis–irradiance modelsMarine Biology95209215CrossRefGoogle Scholar
  59. Zonneveld, C. 1998Photoinhibition as affected by photoacclimation in phytoplankton: a model approachJournal of Theoretical Biology193115123CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Serge Thomas
    • 1
  • Evelyn E. Gaiser
    • 2
  • Franco A. Tobias
    • 1
  1. 1.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  2. 2.Department of Biology, Southeast Environmental Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations