, Volume 569, Issue 1, pp 195–207 | Cite as

Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes

  • Andrew D. Gottlieb
  • Jennifer H. Richards
  • Evelyn E. Gaiser


The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community.


Everglades hydrology algae diatoms cyanobacteria and community structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp1.pdf (13 kb)
supp2.pdf (157 kb)
supp3.pdf (145 kb)
supp4.pdf (12 kb)


  1. Browder, J. A., S. Black, M. Brown, M. Newman, D. Cottrell, D. Black, R. Pope & P. Pope, 1981. Perspectives on the Ecological Causes and Effects of the Variable Algal Composition of Southern Everglades Periphyton. South Florida Research Center, Homestead, FL Report T-643.Google Scholar
  2. Bruno, M. C., Loftus, W. F., Reid, J. W., Perry, S. A. 2001Diapause in copepods (Crustacea) from ephemeral habitats with different hydroperiods in Everglades National Park (Florida, USA)Hydrobiologia453/454295308CrossRefGoogle Scholar
  3. Cattaneo, A., Amireault, M. C. 1992How artificial are artificial substrata for periphyton?Journal of the North American Benthological Society11244256CrossRefGoogle Scholar
  4. Cattaneo, A., Mousseau, B. 1995Empirical analysis of the removal rate of periphyton by grazersOecologia103249254CrossRefGoogle Scholar
  5. Childers, D., Jones, R. D., Trexler, J. C., Buzelli, C., Dailey, S., Edwards,  A., Gaiser, E., Jaychandaran, K., Kenne, A., Lee, D., Meeder, J. F., Pechmann, J. H. K., Renshaw, A., Richards, J., Rugge, M., Scinto, L. J., Sterling, P., Gelder, W. 2002Quantifying the effects of low level phosphorus additions on unenriched Everglades wetlands with In Situ flumes and phosphorus dosingPorter, J. W.Porter, P.K. G.,  eds. The Everglades, Florida Bay, and Coral Reefs of the Florida Keys an Ecosystem SourcebookCRC pressBoca Raton, FL1000Google Scholar
  6. Clarke, K. R. 1993Non-parametric multivariate analyses of changes in community structureAustralian Journal of Ecology18117143Google Scholar
  7. Clarke, K. R., Warwick, R. M. 1994Change in Marine Communities: An Approach to Statistical Analysis and InterpretationNatural Environmental Research CouncilUK144Google Scholar
  8. Danilov, R. A., Ekelund, N. G. A. 2001Comparison of usefulness of three types of artificial substrata (glass, wood, plastic) when studying settlement patterns of periphyton in lakes of different trophic statusJournal of Microbiological Methods45167170PubMedCrossRefGoogle Scholar
  9. Daubenmire, R. 1959A canopy-coverage method of vegetation analysisNorthwest Science334364Google Scholar
  10. DeAngelis, D. L., Loftus, W. F., Trexler, J. C., Ulanowicz, R. E. 1997Modeling fish dynamics and effects of stress in a hydrologically pulsed ecosystemJournal of Aquatic Ecosystem Stress and Recovery6113CrossRefGoogle Scholar
  11. Desikachary, T. V. 1959CyanophytaAcademic PressNew YorkGoogle Scholar
  12. Fairchild, G. W., Lowe, R. L., Richardson, W. B. 1985Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassayEcology66465472CrossRefGoogle Scholar
  13. Fennema, R. J., Neidrauer, C. J., Johnson, R. A., MacVicar, T. K., Perkins, W. A. 1994A computer model to simulate natural Everglades hydrologyDavis, S. M.Ogden, J. C. eds. Everglades: the Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL249289Google Scholar
  14. Gaiser, E. E., Philippi, T. E., Taylor, B. E. 1998Distribution of diatoms among intermittent ponds on the Atlantic Coastal Plain: development of a model to predict drought periodicity from surface-sediment assemblagesJournal of Paleolimnology207190CrossRefGoogle Scholar
  15. Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandran, K., Childers, D. L., Trexler, J. C., Jones, R. D. 2004Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetlandWater Research38507516PubMedCrossRefGoogle Scholar
  16. Garcia-Pichel, F., Pringault, O. 2001Cyanobacteria track water in desert soilsNature413380381PubMedCrossRefGoogle Scholar
  17. Gleason, P. J., Spackman, W. 1974Calcareous periphyton and water chemistry in the EvergladesGleason, P.J. eds. Environments of South Florida: Present and Past, Memoir 2Miami Geological SocietyCoral Gables, FL146181Google Scholar
  18. Gottlieb, A. G., Richards, J., Gaiser, E. 2005Effects of desiccation duration on the community structure and nutrient retention of short and long hydroperiod Everglades periphyton matsAquatic Botany8299112CrossRefGoogle Scholar
  19. Gunderson, L. H. 1994Vegetation of the Everglades: determinants of community compositionDavis, S. M.Ogden, J. C. eds. Everglades: the Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL323340Google Scholar
  20. Hasle, G. R., Fryxell, G. A. 1970Diatoms: cleaning and mounting for light and electron microscopyTransactions of the American Microscopical Society89469474CrossRefGoogle Scholar
  21. Jaskowiak M. A., K. A. Phillips & M. W. Fawley, 2001. Three possible new species of Nitzschia (Hassall) from the Sheyenne River, ND. Page 25 in Phycological Society of America 2001 Meeting Abstracts. Phycological Society of America Meeting. Estes Park, Colorado.Google Scholar
  22. Kobza, R. M., Trexler, J. C., Loftus, W. F., Perry, S. A. 2004Community structure of fishes inhabiting aquatic refuges in a threatened karstic wetland and its implications for ecosystem managementBiological Conservation116153165CrossRefGoogle Scholar
  23. Komárek, J., Anagnostidis, K. 1986Modern approach to the classification system of cyanophytes 2 – ChroococcalesArchiv für Hydrobiologie/Suppl. 80. Algological Studies43157226Google Scholar
  24. Komárek, J., Hindak, F. 1988Taxonomic review of natural populations of cyanophytes from the Gomphosphaeria complexArchiv für Hydrobiologie/Suppl. 80. Algological Studies50–53203225Google Scholar
  25. Komárek, J., Anagnostidis, K. 1989Modern approach to the classification system of cyanophytes 2 – NostocalesArchiv für Hydrobiologie/Suppl. 82. Algological Studies56247345Google Scholar
  26. Krammer, K. 1992Biblitheca Diatomologica: Pinnularia eine Monogrphie der europaischen TaxaJ. CramerBerlinGoogle Scholar
  27. Krammer, K., Lange-Bertalot, H. 1991Bacillariophyaceae: Naviculaceae, SuBwasserflora von MitteleuropaFischerStuttgartGoogle Scholar
  28. Kushlan, J. A. 1989Wetlands and wildlife, the Everglades perspectiveSharitz, R. R.Gibbons, J. W. eds. Freshwater wetlands and wildlife. DOE Symposium Series No. 61Office of Scientific and Technical InformationOak Ridge, TN773790Google Scholar
  29. Lamberti, G. 1996The role of periphyton in benthic food websStevenson, R. J.Bothwell, M. L.Lowe, R. eds. Algal Ecology: Freshwater Benthic EcosystemsAcademic PressSan Diego, CA533564Google Scholar
  30. Lange-Bertalot, H. 1993Bibliotheca Diatomologica: 85 Neue Taxa und uber 100 weitere neu definiente Taxa erganzend zur SuBwasserflora von MitteleuropaJ. CramerBerlinGoogle Scholar
  31. Marszalek Donald, S., Gerchakov, S. M., Udey, L. R. 1979Influence of substrate composition on marine microfoulingApplied and Environmental Microbiology38987995PubMedGoogle Scholar
  32. McCormick, P. V., Shuford, R. B. E.,III, Backus, J. G., Kennedy, W. C. 1998Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USAHydrobiologia362185208CrossRefGoogle Scholar
  33. McCormick, P. V., O’Dell, M. B., Shuford, R. B. E.,III, Backus, J.G., Kennedy, W. C. 2001Periphyton response to experimental phosphorus enrichment in a subtropical wetlandAquatic Botany71119139CrossRefGoogle Scholar
  34. Newman, S., Schuette, J., Grace, J. B., Rutchey, K., Fontaine, T., Reddy, K. R., Pietrucha, M. 1998Factors influencing cattail abundance in the northern EvergladesAquatic Botany60265280CrossRefGoogle Scholar
  35. Patrick, R., Reimer, C. W. 1975The Diatoms of the United States (2)1Sutter HousePhiladelphia, PAGoogle Scholar
  36. Shaver, M., Shannon, J., Wilson, K., Benenati, P., Blinn, W. 1997Effects of suspended sediment and desiccation on the benthic tailwater community in the Colorado River, USAHydrobiologia3576372CrossRefGoogle Scholar
  37. Sheldon, F., Walker, K. 1997Changes in biofilms induced by flow regulation could explain extinctions of aquatic snails in lower River Murray, AustraliaHydrobiologia34797108CrossRefGoogle Scholar
  38. Smith, F. B. 1944The occurrence and distribution of algae in soilsProceedings of the Florida Academy of Science74450Google Scholar
  39. Solarzano, L., Sharp, J. H. 1980Determination of total dissolved phosphorus and particulate phosphorus in natural watersLimnology and Oceanography.25754758CrossRefGoogle Scholar
  40. Starmach, K., 1966. Cyanophyta-Sinice Glaucophyta-Glaukofity, Warsaw.Google Scholar
  41. Stevenson, J. R. & L. L. Bahls, 1997. Periphyton Protocols. In Barbour, Michael T., J. Gerritsen, & B. D. Snyder (eds), Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish (pp. 6: 1–22). USEPA 841-B-99-002.Google Scholar
  42. Thomas, S., Gaiser, E., Gantar, M., Pinowska, A., Scinto, L., Jones, R. 2002Growth of calcareous epilithic mats in the margin of natural and polluted hydrosystems: phosphorus removal implications in the C-111 basin, Florida Everglades, USALake and Reservoir Management18323329CrossRefGoogle Scholar
  43. Townsend, P. A. 2001Relationships between vegetation patterns and hydroperiod on the Roanoke River floodplains, North CarolinaPlant Ecology1564358CrossRefGoogle Scholar
  44. Meter-Kasanof, N. 1973Ecology of microalgae of the Florida Everglades Part I – environment and some aspects of freshwater periphyton, 1959–1963Nova Hedwigia24619664Google Scholar
  45. Vymazal, J., Richardson, C. J. 1995Species composition, biomass, and nutrient content of periphyton in the Florida EvergladesJournal of Phycology31343354CrossRefGoogle Scholar
  46. Weber, C. I. eds. 1973Biological Field and Laboratory Methods Measuring the Quality of Surface Waters and EffluentsUS-EPACincinnati, OhioGoogle Scholar
  47. Whitford, L. A., Schumaker, G. J. 1984A Manual of Fresh-Water AlgaeSparks PressRaleigh, NCGoogle Scholar
  48. Wolin, J. A., & H. C. Duthie, 1999. Diatoms as indicators of water level change in freshwater lakes. In Stoermer, E. F. & J. P. Smalls (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press: 183–204.Google Scholar
  49. Wood, E. J. F., Maynard, N. G. 1974Ecology of the micro-algae of the Florida EvergladesGleason, P. J. eds. Environments of South Florida: Past and Present, Memoir No. 2Miami Geological SocietyCoral Gables, FL123145Google Scholar
  50. Wunderlin, R. P. 1988A guide to the Vascular Plants of FloridaUniversity Press of FloridaGainesville816Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Andrew D. Gottlieb
    • 1
    • 2
  • Jennifer H. Richards
    • 2
  • Evelyn E. Gaiser
    • 2
    • 3
  1. 1.PBS&J, Everglades DivisionJacksonvilleUSA
  2. 2.Department of Biological SciencesFlorida International UniversityMiamiUSA
  3. 3.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations