, Volume 569, Issue 1, pp 99–112 | Cite as

Molecular characterization of Cladium peat from the Florida Everglades: biomarker associations with humic fractions

  • Neghie Hajje
  • Rudolf Jaffé


The accumulation and preservation of peat soils in Everglades freshwater marshes and mangrove swamps is an essential process in the ecological functioning of these ecosystems. Human intervention and climate change have modified nutrient dynamics and hydroperiod in the Everglades and peat loss due to such anthropogenic activities is evident. However, not much is known on the molecular level regarding the biogeochemical characteristics, which allow peat to be preserved in the Everglades. Lipid biomarkers trapped within or bound to humic-type structures can provide important geochemical information regarding the origin and microbial transformation of OM in peat. Four lipid fractions obtained from a Cladium peat, namely the freely extractable fraction and those associated with humin, humic acid, and fulvic acid fractions, showed clear differences in their molecular distribution suggesting different OM sources and structural and diagenetic states of the source material. Both, higher plant derived and microbial lipids were found in association with these humic-type substances. Most biomarker distributions suggest an increment in the microbial/terrestrial lipid ratio from the free to humin to humic to fulvic fractions. Microbial reworking of lipids, and the incorporation of microbial biomarkers into the humic-type fractions was evident, as well as the preservation of diagenetic byproducts. The lipid distribution associated with the fulvic acids suggests a high degree of microbial reworking for this fraction. Evidence for this 3D structure was obtained through the presence of the relatively high abundance of α,ω-dicarboxylic acids and phenolic and benzenecarboxylic compounds. The increment in structural complexity of the phenolic and benzencarboxylic compounds in combination with the reduction in the carbon chain length of the dicarboxylic acids from the free to fulvic fraction suggests the latter to be structurally the most stable, compacted and diagenetically altered substrate. This analytical approach can now be applied to peat samples from other areas within the Everglades ecosystem, affected differently by human intervention with the aim to assess changes in organic matter preservation.


peat diagenesis humin humic and fulvic acids benzenecarboxylic acids Everglades 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken, G. R.McKnight, D. M.Wershaw, R. L.MacCarthy, P. eds. 1985Humic substances in soil, sediment, and water: geochemistry, isolation, and characterizationJohn Wiley & SonsNew York1692Google Scholar
  2. Almendros, G., Sanz, J. 1989Compounds released from humic acids upon BF3–MeOH transesterificationThe Science and the Total Environment81/825160CrossRefGoogle Scholar
  3. Almendros, G., Sanz, J., Gonzalez-Vila, F. J., Martin, F. 1991Evidence of polyalkyl nature of a soil huminNaturwissenscheften78359362CrossRefGoogle Scholar
  4. Ambles, A., Parlanti, E., Mayoungou, P., Jambu, P., Jacquesy, J. C. 1994n-Alkane oxidation in soil. Formation of internal monoalkanesGeoderma64111124CrossRefGoogle Scholar
  5. Beller, H. R. & B. R. T. Simoneit, 1986. Polychlorinated biphenyls and hydrocarbons: distribution among bound and unbound lipid fractions of estuarine sediments. Organic marine geochemistry. In Sohn, M. L. (ed.), ACS Symposium Series 305, 198–214.Google Scholar
  6. Brooks, P. W., Maxwell, J. R. 1974Early stage fate of phytol in a recently deposited lacustrine sedimentTissot, BBienner, F eds. Advances in Organic Geochemistry, 1973Editions TechnipParis977991Google Scholar
  7. Cranwell, P. A. 1982Lipids of aquatic sediments and in sedimenting particulatesLipid Research21271308CrossRefGoogle Scholar
  8. Eglinton, G., Hamilton, R. J. 1967Leaf epicuticular waxesScience1561322PubMedGoogle Scholar
  9. Eyseen, H. J., Parmentier, G. G., Compernolle, F. C., Pauw, G., Piessens-Denef, M. 1973Biohydrogenation of sterols by Eubacterium ATCC 21, 408-Nova speciesEuropean Journal of Biochemistry36411421CrossRefGoogle Scholar
  10. Given, P. H., Dickinson, C. H. 1975Biochemistry and microbiology of peatsPaul, E. A.Mclean, A. D. eds. Soil BiochemistryMarcel DekkerNew York124212Google Scholar
  11. Goossens, H., Duren, R. R., Leeuw, J. W., Schenck, P. A. 1989Lipids and their mode of occurrence in bacteria and sediments-II. Lipids in the sediment of a stratified freshwater lakeOrganic Geochemistry142741CrossRefGoogle Scholar
  12. Grasset, L., Ambles, A. 1998aStructure of humin and humic acid from an acid soil revealed by phase transfer catalyzed hydrolysisOrganic Geochemistry29881891CrossRefGoogle Scholar
  13. Grasset, L., Ambles, A. 1998bAliphatic lipids released from a soil humin after enzymatic degradation of celluloseOrganic Geochemistry29893897CrossRefGoogle Scholar
  14. Grasset, L., Guignard, C., Ambles, A. 2002Free and esterified aliphatic carboxylic acids in himin and humic acids from a peat sample as revealed by pyrolysis with tetramethylammonium hydroxide or tetraethylammonium acetateOrganic Geochemistry33181188CrossRefGoogle Scholar
  15. Grimalt, J. O., Saiz-Jimenez, C. 1989Lipids of soil humic acids-I. The hymatomelanic acid fractionThe Science and Total Environment81/82409420CrossRefGoogle Scholar
  16. Grimalt, J. O., Hermosin, B., Yruela, I., Saiz-Jimenez, C. 1989Lipids of soil humic acids-II. Residual components after hymatomelanic acid extractionThe Science and Total Environment81/82421428CrossRefGoogle Scholar
  17. Gunderson, H. L. 2000Vegetation of the everglades: determinants of community compositionDavis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationCRC PressSt. Lucie, USA323340Google Scholar
  18. Guthrie, E. A., Bortiatynski, J. M., Heemst, J. D. H., Richman, J. E., Hardy, K. S., Kovach, E. M., Hatcher, P. G. 1999Determination of [C-13]pyrene sequestration in sediment microcosms using flash pyrolysis GC-MS and C-13 NMREnvironmental Science and Technology33119125CrossRefGoogle Scholar
  19. Hernandez, M., Mead, R. N., Peralba, M. C., Jaffé, R. 2001Origin and transport of n-alkan-2-ones in a subtropical estuary: potential biomarkers for seagrass-derived organic matterOrganic Geochemistry322132CrossRefGoogle Scholar
  20. Holland, H. L., Diakow, R. R. P. 1979Microbial hydroxylation of steroids 5. Metabolism of androst-5-en-3,17-dione and related compounds by Rhizopus arrhizus ATCC, 11145Canadian Journal of Chemistry57436440CrossRefGoogle Scholar
  21. Jaffé, R., Cabrera, A., Hajje, N., Carvajal-Chitty, H. 1996Organic biogeochemistry of a hypereutrophic tropical, freshwater lake – Part 1: particle associated and disolved lipidsOrganic Geochemistry25227240CrossRefGoogle Scholar
  22. Jaffé, R., Diaz, D., Hajje, N., Chen, L., Eckardt, C., Furton, K. G. 1997aHydrocarbon speciation in ancient sediments studied by stepwise supercritical carbon dioxide extractionOrganic Geochemistry265965CrossRefGoogle Scholar
  23. Jaffé, R., Hausmann, K., Cabrera, A., Carvajal Chitty, H. 1997bOn the origin and fate of alkan-2-ones in freshwater environmentsManning, D. eds. Organic Geochemistry: Applications in Energy and EnvironmentManchester University PressManchester, UK356359Google Scholar
  24. Jaffé, R., Diaz, D., Furton, K. G., Lafargue, E. 2000High temperature supercritical carbon dioxide extractions of geological samples: effects and contributions from the sample matrixApplied Geochemistry157989CrossRefGoogle Scholar
  25. Jaffé, R., Hernandez, M. E., Mead, R. N., Peralba, M. C., DiGuida, O. A. 2001Origin and transport of sedimentary organic matter in two sub-tropical estuaries: a comparative, biomarker-based studyOrganic Geochemistry32507526CrossRefGoogle Scholar
  26. Killops, S., Killops, V. 2005Introduction to Organic GeochemistryBlackwell Science LtdMalden, USAGoogle Scholar
  27. Kögel-Knabner, I. 1997 13C and 15N NMR spectroscopy as a tool in soil organic matter studiesGeoderma80243270CrossRefGoogle Scholar
  28. Lehtonen, K., Ketola, M. 1992Solvent extractable lipids of Sphagnum, Carex, Bryales and Carex-Bryales peat: content and compositional features vs. peat humificationOrganic Geochemistry20363380CrossRefGoogle Scholar
  29. Lehtonon, K., Hanninen, K., Ketola, M. 2001Structurally bound lipids in peat humic acidsOrganic Geochemistry323343CrossRefGoogle Scholar
  30. Matsumoto G. I., K. Watanuki & T. Torii, 1987.Further study on the vertical distribution of organic constituents in an Antarctic lake. Lake Vanda. In Proc. NIPR Symp. Polar Biol. No. 1 NRI, Tokyo, 219–232.Google Scholar
  31. Naafs, D. F. W., Bergen, P. F. 2002A quantitative study on the chemical composition of ester-bound moieties in an acidic andosolic forest soilOrganic Geochemistry33189199CrossRefGoogle Scholar
  32. Orem, W. H., Hatcher, P. G. 1987Early diagenesis of organic matter in a Sawgrass peat from the Everglades, FloridaInternational Journal of Coal and Geology83354CrossRefGoogle Scholar
  33. Richnow, H. H., Eschenbach, A., Mahro, B., Kästner, M., Annweiler, E., Seifert, R., Michaelis, W. 1999The formation of nonextractable soil bound residues – a stable isotope approachEnvironmental Science and Technology3337613767CrossRefGoogle Scholar
  34. Schnitzer M., 1978. Humic substances: chemistry and reactions, In Schnitzer, M. & S. U. Khan (eds), Elsevier, Amsterdam. Chap. 1, 1–63.Google Scholar
  35. Schnitzer, M., Neyroud, J. A. 1974Alkanes and fatty acids in humic substancesSoil Organic Matter Development in soil Science84247Google Scholar
  36. Schnitzer, M., Khan, S. U. 1972Humic Substances in the EnvironmentMarcel DekkerNew York, NY17Google Scholar
  37. Shaw, N. 1974Lipid composition as a guide to the classification of bacteriaAdvances in Microbiology1763108CrossRefGoogle Scholar
  38. Simoneit, B. R. T. 1986Cyclic terpenoids of the geosphereJohn, R. B. eds. Biological Markers in the Sedimentary RecordElsevierOxford4399Google Scholar
  39. Stevenson, F.J. 1994Humus Chemistry: Genesis, Composition, Reactions2John Wiley & SonsNew York1512Google Scholar
  40. Volkman, J. K. 1986A review of sterol markers for marine and terrigenous organic matterOrganic Geochemistry983100CrossRefGoogle Scholar
  41. Wakeham, S. G., Farrington, J. W., Gagosian, R. B. 1984Variability in lipid flux and composition of particulate matter in the Peru upwelling regionOrganic Geochemistry6203215CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Environmental Geochemistry Laboratory, Southeast Environmental Research Center and Department of Chemistry & BiochemistryFlorida International UniversityMiamiUSA

Personalised recommendations