, Volume 569, Issue 1, pp 71–85 | Cite as

The role of dissolved organic matter bioavailability in promoting phytoplankton blooms in Florida Bay

  • Joseph N. Boyer
  • Susan K. Dailey
  • Patrick J. Gibson
  • Matthew T. Rogers
  • Danielle Mir-Gonzalez


The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.


dissolved organic matter cyanobacteria microbial ecology nutrients phytoplankton phosphorus estuary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammerman, J. W., Azam, F. 1991Bacterial 5′-nucleosidase activity in estuarine and coastal marine waters: characterization of enzyme activityLimnology and Oceanography3614271436Google Scholar
  2. Amon, R. M. W., Benner, R. 1996Bacterial utilization of different size classes of dissolved organic matterLimnology and Oceanography414151Google Scholar
  3. Avery, G. B.,Jr., Willey, J. D., Kieber, R. J., Shank, G. C., Whitehead, R. F. 2003Flux and bioavailability of Cape Fear River and rainwater dissolved organic carbon to Long Bay, southeastern United StatesGlobal Biogeochemical Cycles171042CrossRefGoogle Scholar
  4. Azam, F., Fenchel, T., Field, J. G., Meyer-reil, A., Thingstad, F. 1983The ecological role of water-column microbes in the seaMarine Ecology Progress Series10257263Google Scholar
  5. Bell, R. T. 1993Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidineKemp, P. F.Sherr, B. F.Sherr, E. B.Cole, J. J. eds. Handbook of Methods in Aquatic Microbial EcologyLewis PublishersBoca Raton, Florida495503Google Scholar
  6. Benner, R., Peele, E. R., Hodson, R. E. 1986Microbial utilization of dissolved organic matter from leaves of the Red Mangrove, Rhizophora mangle, in the Fresh Creek Estuary, BahamasEstuarine, Coastal and Shelf Science23607619CrossRefGoogle Scholar
  7. Bentzen, E., Taylor, W. D., Millard, E. S. 1992The importance of dissolved organic phosphorus to phosphorus uptake by limnetic planktonLimnology and Oceanography37217231Google Scholar
  8. Boyer, J. N., 2005. FY2004 Annual Report of the South Florida Coastal Water Quality Monitoring Network. SERC Tech. Rep. T-265.
  9. Boyer, J. N., Fourqurean, J. W., Jones, R. D. 1997Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariate analyses: zones of similar influenceEstuaries20743758CrossRefGoogle Scholar
  10. Boyer, J. N., Fourqurean, J. W., Jones, R. D. 1999Seasonal and long-term trends in water quality of Florida Bay (1989–1997)Estuaries22417430CrossRefGoogle Scholar
  11. Boyer, J. N., Jones, R. D. 1999Effects of freshwater inputs and loading of phosphorus and nitrogen on the water quality of Eastern Florida BayReddy, K. R.O’Connor, G. A.Schelske, C. L. eds. Phosphorus Biogeochemistry in Sub-tropical EcosystemsCRC/Lewis PublishersBoca Raton, FL545561Google Scholar
  12. Boynton W. R., W. M. Kemp, C. W. Keefe, 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In Kennedy, V. (ed.), Estuarine Comparisons. Academic Press, 69–90.Google Scholar
  13. Brand, L., 1999. Nutrient bioassays and the Redfield ratio in Florida Bay. Abstracts of the 1999 Florida Bay and Adjacent Marine Systems Science Conference. Key Largo, FL, 78–79.Google Scholar
  14. Bugden, J. B. C., Guerrero, M. A., Jones, R. D. 1998Spatial and temporal variation of marine bacterioplankton in Florida Bay, USAJournal of Coastal Research1413041313Google Scholar
  15. Carlsson, P., Graneli, E. 1993Availability of humic bound nitrogen for coastal phytoplanktonEstuarine, Coastal and Shelf Science36433447CrossRefGoogle Scholar
  16. Caron, D. A. 1994Inorganic nutrients, bacteria, and the microbial loopMicrobial Ecology28295298CrossRefGoogle Scholar
  17. Cembella, A. D., Antia, N. J., Harrison, P. J. 1984The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective. Part 1CRC Critical Reviews in Microbiology10317391PubMedGoogle Scholar
  18. Chrost, R. J., 1990. Microbial ectoenzymes in aquatic environments. In Overbeck, J. & R. J. Chrost (eds), Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, 47–78.Google Scholar
  19. Coleman, A. W. 1980Enhanced detection of bacteria in natural environments by flourochrome staining of DNALimnology and Oceanography25948951Google Scholar
  20. Cotner, J. B., Sada, R. H., Bootsma, H., Johengen, T., Cavaletto, J. F., Gardner, W. S. 2000Nutrient limitation of heterotrophic bacteria in Florida BayEstuaries23611620CrossRefGoogle Scholar
  21. Giorgio, P. A., Cole, J. J. 1998Bacterioplankton growth efficiency in aquatic systemsAnnual Review of Ecological Systematics29503541CrossRefGoogle Scholar
  22. del Giorgio, P. A. & J. Davis, 2003. Patterns in dissolved organic matter lability and consumption across aquatic ecosystems. In Findlay, S. E. G. & R. L. Sinsabaugh (eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, 399–424.Google Scholar
  23. Ducklow, H. W., Carlson, C. A. 1992Oceanic bacterial productionAdvances in Microbial Ecology12113181Google Scholar
  24. Fourqurean, J. W., Jones, R. D., Zieman, J. C. 1993Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributionsEstuarine, Coastal and Shelf Science36295314CrossRefGoogle Scholar
  25. Frankovich, T. A., Jones, R. D. 1998A rapid, precise, and sensitive method for the determination of total nitrogen in natural watersMarine Chemistry60227234CrossRefGoogle Scholar
  26. Garaudet, H., Berthon, J. L., Buisson, B. 1997Comparison of the daily alkaline phosphatase activity of a cyanobacterium (Microcystis aeruginosa) and a diatom (Synedra capitata)Comptes rendus de l’Académie des sciences. Série III, Sciences de la vie320451458CrossRefGoogle Scholar
  27. Glibert, P. M., Heil, C. A., Hollander, D., Revilla, M., Hoare, A., Alexander, J., Murasko, S. 2004Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida BayMarine Ecology Progress Series2807383Google Scholar
  28. Hashimoto, S., Fujiwara, K., Fuwa, K. 1985Relationship between alkaline phosphatase activity and orthophosphate in the present Tokyo BayJournal of Environmental Science and Health, Part A20A781908CrossRefGoogle Scholar
  29. Holmquist, J. G., Powell, G. V. N., Sogard, S. M. 1989Sediment, water level and water temperature characteristics of Florida Bay’s grass-covered mud banksBulletin of Marine Science44348364Google Scholar
  30. Jaffe, R., Boyer, J. N., Lu, X., Maie, N., Yang, C., Scully, N. 2003Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysisMarine Chemistry84195210CrossRefGoogle Scholar
  31. Kitano, Y., Okumura, M., Idogaki, M. 1978Uptake of phosphate ions by calcium carbonateGeochemistry Journal122937Google Scholar
  32. Lavrentyev, P. J., Bootsma, H. A., Johengen, T. H., Cavaletto, J. F., Gardner, W. S. 1998Microbial plankton response to resource limitation: insights from the community structure and seston stoichiometry in Florida Bay, USAMarine Ecology Progress Series1654557Google Scholar
  33. Lewitus, A. J., E. T. Koepfler & R. J. Pigg, 2000. Use of dissolved organic nitrogen by a salt marsh phytoplankton bloom community. Limnology and Lake Management 2000+. Proceedings of the Kinneret Symposium, Ginnosar, Israel, Sept. 1998. No. 55, pp. 15–29. Advances in limnology. Stuttgart.Google Scholar
  34. Maie, N., Boyer, J. N., Yang, C., Jaffé, R. 2006Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida Coastal EvergladesHydrobiologia569135150Google Scholar
  35. Nausch, M., Nausch, G. 2004Bacterial utilization of phosphorus pools after nitrogen and carbon amendment and its relation to alkaline phosphatase activityAquatic Microbial Ecology37237245Google Scholar
  36. Phlips, E. J., Badylak, S. 1996Spatial variability in phytoplankton standing crop and composition in a shallow inner-shelf lagoon, Florida Bay, FloridaBulletin of Marine Science58203216Google Scholar
  37. Phlips, E. J., Badylak, S., Lynch, T. C. 1999Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoonLimnology and Oceanography4411661175Google Scholar
  38. Phlips, E. J., Zeman, C., Hansen, P. 1989Growth, photosynthesis, nitrogen fixation, and carbohydrate production by a unicellular cyanobacterium, Synechococcus sp. (Cyanophyta)Journal of Applied Phycology1137145Google Scholar
  39. Porter, K. G., Feig, Y. 1980The use of DAPI for identifying and counting aquatic microfloraLimnology and Oceanography25934Google Scholar
  40. Rudnick, D., Chen, Z., Childers, D., Fontaine, T., Boyer, J. N. 1999Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershedEstuaries22398416CrossRefGoogle Scholar
  41. Sculley, N. M., Maie, N., Dailey, S. K., Boyer, J. N., Jaffe, R. 2004Photochemical and microbial transformation of plant derived dissolved organic matter in the Florida EvergladesLimnology and Oceanography4916671678CrossRefGoogle Scholar
  42. Smith, R. E. H., Kalff, J. 1981The effect of phosphorus limitation on algal growth rates: evidence from alkaline phosphataseCanadian Journal of Fisheries and Aquatic Sciences3814211427Google Scholar
  43. Sobszak, W. V., Cloern, J. E., Jassby, A. D., Muller-Solger, A. B. 2002Bioavailability of organic matter in a highly disturbed estuary: the role of algal and detrital resourcesProceedings of the National Academy of Science9981018105CrossRefGoogle Scholar
  44. Solorzano, L., Sharp, J. H. 1980Determination of total dissolved phosphorus and particulate phosphorus in natural watersLimnology and Oceanography25754758CrossRefGoogle Scholar
  45. Steidinger, K. A., & E. J. Phlips, 1996. Florida Bay microalgal blooms: composition, abundance, and distribution. Abstracts of the 1996 Florida Bay Science Conference. Florida Sea Grant, 77–79.Google Scholar
  46. Stepanauskas, R., 2000. Utilization of terrestrially derived dissolved organic nitrogen. Dissertation. Lund University, Lund, Sweden.Google Scholar
  47. Tezuka, Y. 1990Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substratesMicrobial Ecology19227238CrossRefGoogle Scholar
  48. Turney, W. J. & B. F. Perkins, 1972. Molluscan distribution in Florida Bay. Sedimenta III. RSMAS, University of Miami. 37 pp.Google Scholar
  49. Waser, N. A. D., Harrison, P. J., Nielsen, B., Calvert, S. E., Turpin, D. H. 1998Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatomLimnology and Oceanography43215224CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Joseph N. Boyer
    • 1
  • Susan K. Dailey
    • 1
  • Patrick J. Gibson
    • 1
  • Matthew T. Rogers
    • 1
  • Danielle Mir-Gonzalez
    • 1
  1. 1.Southeast Environmental Research Center, OE-178Florida International UniversityMiamiUSA

Personalised recommendations