Advertisement

Hydrobiologia

, Volume 569, Issue 1, pp 37–59 | Cite as

Interaction of hydrology and nutrient limitation in the Ridge and Slough landscape of the southern Everglades

  • Michael S. Ross
  • Sherry Mitchell-Bruker
  • Jay P. Sah
  • Stuart Stothoff
  • Pablo L. Ruiz
  • David L. Reed
  • Kris Jayachandran
  • Charles L. Coultas
Article

Abstract

Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.

Keywords

flow pore water evapotranspiration landscape heterogeneity peat soils tree islands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckage, B., Platt, W. J., Slocum, M.G., Panko, B. 2003Influence of the El Nino southern-oscillation on fire regimes in the Florida EvergladesEcology8431243130Google Scholar
  2. Bedford, B. L. M., Walbridge, M. R., Aldous, A. 1999Patterns in nutrient availability and plant diversity of temperate North American wetlandsEcology8021512169CrossRefGoogle Scholar
  3. Black, C. A. 1968Soil–Plant Relationships2WileyNew York792Google Scholar
  4. Blake, G. R., Hartge, K. H. 1986Bulk densityKlute, A. eds. Methods of Soil Analysis, Part I Physical and Minerological Methods2American Society of AgronomyMadison, Wisconsin, USA363375Google Scholar
  5. Busch, D. E., Loftus, W. F., Bass, O. L.,Jr. 1998Long-term hydrologic effects on marsh plant community structure in the southern EvergladesWetlands18230241Google Scholar
  6. Caffrey, J. M., Kemp, W. M. 1990Nitrogen cycling in sediments with estuarine populations of Potamogeton pefoliatus and Zostera marina Marine Ecology Progress Series66147160Google Scholar
  7. Calder, I. A. 1998Water use by forests, limits and controlsTree Physiology18625631PubMedGoogle Scholar
  8. Childers, D. L., Doren, R. F., Jones, R., Noe, G. B., Rugge, M., Scinto, L. J. 2003Decadal change in vegetation and soil phosphorus pattern across the Everglades landscapeJournal of Environmental Quality32344362PubMedCrossRefGoogle Scholar
  9. Clark, M. W. & K. R. Reddy, 2003. Spatial variability and modeling of soil accretion in Shark Slough. Report to the Everglades National Park, Agency Contract # H5000 01 0494.Google Scholar
  10. Daoust, R. J., Childers, D. L. 1999Controls on emergent macrophytic composition, abundance, and productivity in freshwater Everglades wetland communitiesWetlands19262275Google Scholar
  11. Davis, J. R. Jr., 1946. The peat deposits of Florida: Florida Geological Survey. Bulletin 30, 247 pp.Google Scholar
  12. Dean, W. E. 1974Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methodsJournal of Sedimentology Petrology44242248Google Scholar
  13. Doren, R. F., Armentano, T. V., Whiteaker, L. D., Jones, R. D. 1997Marsh vegetation patterns and soil phosphorus gradients in the Everglades ecosystemAquatic Botany56145163CrossRefGoogle Scholar
  14. Engel, V., E. G. Jobbágy, M. Stieglitz, M. Williams & R. B. Jackson, 2005. Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Water Resources Research 41: W10409, doi:10.1029/2004WR003761.Google Scholar
  15. ENP (Everglades National Park), 2005. South Florida Natural Resources Center Physical Data Base, http://www.sfnrc.ever.nps.gov/.Google Scholar
  16. Fish, J. E., M. Stewart, 1991. Hydrogeology of the surficial aquifer system, Dade County, Florida. United States Geological Survey Water Resources Investigation Report # 90–4108. 50 pp.Google Scholar
  17. Fisher, R. F., Eastburn, R. P. 1974Afforestation alters prairie soil nitrogen statusSoil Science Society of America Proceedings38366368CrossRefGoogle Scholar
  18. Foster, D. R., King, G. A., Glaser, P. H., Wright, H. E.,Jr. 1983Origin of string patterns in boreal peatlandsNature306256258CrossRefGoogle Scholar
  19. Foster, D. R., Wright, H. E., Thelaus, M., King, G. A. 1988Bog development and landform dynamics in central Sweden and southeastern Labrador, CanadaJournal of Ecology7611641185CrossRefGoogle Scholar
  20. Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandran, K., Childers, D. L., Trexler, J. C., Jones, R. D. 2004Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetlandWater Research38507516PubMedCrossRefGoogle Scholar
  21. German E. R., 2000. Regional Evaluation of Evapotranspiration in the Everglades. US Geological Survey, Report # 00–4217 Tallahassee Florida, USA.Google Scholar
  22. Givnish, T. J. & J. C. Volin, 2003. Self-assembly of Slough-Ridge-Tree island landscapes in the central Everglades: a model for the integration of Hydrological and Ecological Processes. Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem April 13–18, 2003. Palm Harbor, Florida, USA. Abstract.Google Scholar
  23. Gleason, P. J., Stone, P. 1994Age, origin, and landscape evolution of the Everglades peatlandDavis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie Press, Delray BeachFlorida, USA149197Google Scholar
  24. Gunderson, L. H., 1989. Historical hydropatterns in wetland communities in Everglades National Park. In Sharitz, R. R. & J. W. Gibbons, (eds.), Freshwater Wetlands and Wildlife. CONF-8603101, DOE Symposium Series No. 61: 1099–1111.Google Scholar
  25. Haitjema, H. M. 1995Analytic element modeling of groundwater flowAcademic Press, IncSan Diego, CA, USAGoogle Scholar
  26. Harvey, J. W., Krupa, S. L., Kress, J. M. 2004Ground water recharge and discharge in the Central EvergladesGround Water4210901102CrossRefGoogle Scholar
  27. Jobbágy, E. G., Jackson, R. B. 2004Groundwater use and salinization with grassland afforestationGlobal Change Biology1012991312CrossRefGoogle Scholar
  28. Jones, L. A., R. V. Allison & G. D. Ruehle, 1948. Soils, geology, and water control in the Everglades region: University of Florida Agricultural Experiment Station Bulletin 442, 168 pp.Google Scholar
  29. Kelliher, F. M., Leuning, R., Schulze, E. D. 1993Evaporation and canopy characteristics of coniferous forests and grasslandsOecologia95153163CrossRefGoogle Scholar
  30. Keppel, G. 1973Design and Analysis: A Researcher’s HandbookPrentice Hall IncEnglewood Cliffs, NJ, USAGoogle Scholar
  31. King, R. S., Richardson, C. J., Urban, D. L., Romanowicz, E. A. 2004Spatial dependency of vegetation-environment linkages in an anthropogenically influenced wetland ecosystemEcosystems77597CrossRefGoogle Scholar
  32. Koch, M. S., Reddy, K. R. 1992Distribution of soil and plant nutrients along a trophic gradient in the Florida EvergladesSoil Science Society of America Journal5614921499CrossRefGoogle Scholar
  33. Koerselman, W., Meuleman, A. F. M. 1996The vegetation N:P ratio: a new tool to detect the nature of nutrient limitationJournal of Applied Ecology3314411450CrossRefGoogle Scholar
  34. Leighty, R. C., Henderson, J. R. 1958Soil Survey (detailed reconnaissance) of Dade County, Florida . Series 1947, No. 4USDA Soil Conservation ServiceWashington, DC, USAGoogle Scholar
  35. Light, S. S., Dineen, J. W. 1994Water control in the Everglades: a historical perspectiveDavis, S. M.Ogden, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, Florida, USA,4784Google Scholar
  36. McGlathery, K. J., Berg, P., Marino, R. 2001Using porewater profiles to assess nutrient availability in seagrass-vegetated carbonate sedimentsBiogeochemistry56239263CrossRefGoogle Scholar
  37. McLean, E. O. 1982Soil pH and lime requirementPage, A. L.Miller, R. H.Keeney, R. D. eds. Methods of Soil Analysis. 2. Chemical and Microbiological Properties. Agronomy Monograph No 92Soil Science Society of AmericaMadison, Wisconsin, USA199209Google Scholar
  38. Miao, S. L., DeBusk, W. F. 1999Effects of phosphorus enrichment on structure and function of sawgrass and cattail communities in the EvergladesReddy, K. R.O’Connor, G. A.Schelske, C. L. eds. Phosphorus Biogeochemistry in Subtropical EcosystemsLewis PublishersNew York, USAGoogle Scholar
  39. Mitchell-Bruker, S., Bazante, J., Childers, D., Leonard, L., Ross, M., Solo-Gabriele, H., Snow, R., Stothoff, S. 2005Effect of Hydrology on Everglades Ridge and Slough CommunityReport to Everglades National ParkHomestead, Florida, USAGoogle Scholar
  40. Newman, S., Pietro, K. 2001Phosphorus storage and release in response to flooding: implications for Everglades stormwater treatment areasEcological Engineering182338CrossRefGoogle Scholar
  41. Newman, S., Grace, J. B., Koebel, J. W. 1996Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for Everglades restorationEcological Applications6774783CrossRefGoogle Scholar
  42. Newman, S., Schuette, J., Grace, J. B., Rutchey, K., Fontaine, T., Reddy, K. R., Pietrucha, M. 1998Factors influencing cattail abundance in the northern EvergladesAquatic Botany60265280CrossRefGoogle Scholar
  43. Noe, G. B., Childers, D. L., Jones, R. D. 2001Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique?Ecosystems4603624CrossRefGoogle Scholar
  44. Olmsted, I. C., Armentano, T. V. 1997Vegetation of Shark Slough, Everglades National Park. Technical Report # SFNRC 97–001South Florida Natural Resource CenterEverglades National Park, Homestead, Florida, USAGoogle Scholar
  45. Orem, W. H., Willard, D. A., Lerch, H. E., Bates, A. L., Boylan, A., Comm, M. 2002Nutrient geochemistry of sediments from two tree islands in Water Conservation Area 3B, the Everglades, FloridaSklar, F.van der, A. eds. Tree Islands of the EvergladesKluwer Academic PublishersDordrecht, The Netherlands153186Google Scholar
  46. Parker, F. W., J. R. Adams, K. G. Clark, K. D. Jacob & A. L. Mehring, 1946. Fertilizers and Lime in The United States: Resources, Production, Marketing, and Use. US Department of Agriculture, Miscellaneous Publication # 586, 56 pp.Google Scholar
  47. Pastor, J., Aber, J. D., McClaugherty, C. A. 1984Aboveground production and nitrogen and phosphorus cycling along a nitrogen mineralization gradient on Blackhawk island, WisconsinEcology65256268CrossRefGoogle Scholar
  48. Patrick, W. H., Khalid, R. A. 1974Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditionsScience1865355PubMedGoogle Scholar
  49. Pauliukonis, N., Schneider, R. 2001Temporal patterns in evapotranspiration from lysimeters with three common wetland plant species in the eastern United StatesAquatic Botany713546CrossRefGoogle Scholar
  50. Porter, P. S., Sanchez, C. A. 1992The effect of soil properties on phosphorus adsorption by Everglades histosolsSoil Science154387398Google Scholar
  51. J. D. Rhoades 1996. Salinity: electrical conductivity and total dissolved solids. In Sparks D.L. (ed.), Methods of Soil Analysis Soil Science Society of America Book Series. (5th edn): 417-436.Google Scholar
  52. Richardson, C. J., Vaithiyanathan, P. 1995Phosphorus sorption characteristics of Everglades soils along a eutrophication gradientSoil Science Society of America Journal5917821788CrossRefGoogle Scholar
  53. Rietkerk, M., Dekker, S. C., Wassen, M. J., Verkroost, A. W. M., Bierkens, M. F. P. 2004A putative mechanism for bog patterningAmerican Naturalist163699708PubMedCrossRefGoogle Scholar
  54. Ross, M. S., Reed, D. L., Sah, J. P., Ruiz, P. L., Lewin, M. T. 2003Vegetation: environment relationships and water management in Shark Slough, Everglades National ParkWetlands Ecology and Management11291303CrossRefGoogle Scholar
  55. Ross, M. S., Jones, D. T., Chmura, G. L., Cooley, H. C., Hwang, H., Jayachandran, K., Oberbauer, S. F., Reed, D. L., Ruiz, P. L., Sah, J. P., Sah, S., Stockman, D., Stone, P. A., Walters, J. 2004Tree Islands in the Shark Slough Landscape: Interactions of Vegetation, Hydrology and SoilsFinal Report. Submitted to the Everglades National ParkHomestead, Florida, USAGoogle Scholar
  56. Ruiz, P. L., Ross, M. S. 2004Vegetation mapping and landscape pattern in Shark SloughRoss, M. S.Jones, D. T.Chmura, G. L.Cooley, H. C.Hwang, H.Jayachandran, K.Oberbauer, S. F.Reed, D. L.Ruiz, P. L.Sah, J. P.Sah, S.Stockman, D.Stone, P. A.Walters, J. eds. Tree Islands in the Shark Slough Landscape: Interactions of Vegetation, Hydrology and SoilsFinal Report. Submitted to the Everglades National ParkHomestead, Florida, USA1728Google Scholar
  57. Schellekens, J., Scatena, F. N., Bruijenzeel, L. A., Wickel, A. J. 1999Modeling rainfall interception by a lowland tropical rain forest in northeastern Puerto RicoJournal of Hydrology225168184CrossRefGoogle Scholar
  58. SCT (Science Coordination Team), 2003. The role of flow in the Everglades ridge and slough landscape, South Florida Ecosystem Restoration Working Group, 62 pp.Google Scholar
  59. Short, F. T., Montgomery, J., Zimmerman, C. F., Short, C. A. 1993Production and nutrient dynamics of a Syringodium filiforme Kutz. Seagrass bed in Indian River Lagoon, FloridaEstuaries16323334CrossRefGoogle Scholar
  60. Solorzano, L., Sharp, J. H. 1980Determination of total dissolved phosphorus and particulate phosphorus in natural watersLimnology and Oceanography25754758CrossRefGoogle Scholar
  61. Statsoft, Inc., 2004. STATISTICA for windows, version 6.1, Statsoft, Inc. Tulsa, Oklahoma, USA.Google Scholar
  62. Steward, K. K., Ornes, W. H. 1975The autecology of sawgrass in the Florida EvergladesEcology56162171CrossRefGoogle Scholar
  63. Stone, P. A., G. L. Chmura, M. S. Ross, P. L. Ruiz, 2005. Sediment and pollen stratiography in Bayhead forest of two large elongated tree islands, southern Everglades. Society of Wetland Scientists 26th Annual Meeting, June 5–10, 2005. Charleston, South Carolina, USA. Abstract.Google Scholar
  64. Stothoff, S. & S. Mitchell-Bruker, 2003. Everglades Modeling. EOS Transactions. AGU, 84 (46), Fall Meeting Supplements, Abstract # NG31A-0602, San Francisco, California, Dec. 2003.Google Scholar
  65. Swanson, D. K., Grigal, D. F. 1988A simulation model of mire patterningOikos53309314Google Scholar
  66. Troelstra, S. R., Lotz, L. A. P., Wagenaar, R., Sluimer, L. 1990Temporal and spatial variability in soil nutrient status of a former beach plainPlant and Soil127112CrossRefGoogle Scholar
  67. USGS (United States Geological Survey), 2000. South Florida Information Access Data Exchange. http://sofia.usgs.gov/exchange/german/germanet.html.Google Scholar
  68. Oorschott, M., Robbemont, E., Boerstal, M., Strien, I., Kerkoven-Schmitz, M. 1997Effects of enhanced nutrient availability on plant and soil nutrient dynamics in two English riverine ecosystemsJournal of Ecology85167179CrossRefGoogle Scholar
  69. Zhou, M., Li, Y. 2001Phosphorus-sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlandsSoil Science Society of America Journal6514041412CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Michael S. Ross
    • 1
    • 2
  • Sherry Mitchell-Bruker
    • 3
  • Jay P. Sah
    • 1
  • Stuart Stothoff
    • 3
  • Pablo L. Ruiz
    • 1
  • David L. Reed
    • 1
  • Kris Jayachandran
    • 1
    • 2
  • Charles L. Coultas
    • 4
  1. 1.Southeast Environmental Research Center (SERC)Florida International UniversityMiamiUSA
  2. 2.Department of Environmental StudiesFlorida International UniversityMiamiUSA
  3. 3.Everglades National ParkHomesteadUSA
  4. 4.Florida A. & M. UniversityTallahasseeUSA

Personalised recommendations