Hydrobiologia

, Volume 569, Issue 1, pp 23–36 | Cite as

Coastal groundwater discharge – an additional source of phosphorus for the oligotrophic wetlands of the Everglades

  • René M. Price
  • Peter K. Swart
  • James W. Fourqurean

Abstract

In this manuscript we define a new term we call coastal groundwater discharge (CGD), which is related to submarine groundwater discharge (SGD), but occurs when seawater intrudes inland to force brackish groundwater to discharge to the coastal wetlands. A hydrologic and geochemical investigation of both the groundwater and surface water in the southern Everglades was conducted to investigate the occurrence of CGD associated with seawater intrusion. During the wet season, the surface water chemistry remained fresh. Enhanced chloride, sodium, and calcium concentrations, indicative of brackish groundwater discharge, were observed in the surface water during the dry season. Brackish groundwaters of the southern Everglades contain 1–2.3μM concentrations of total phosphorus (TP). These concentrations exceed the expected values predicted by conservative mixing of local fresh groundwater and intruding seawater, which both have TP<1 μM. The additional source of TP may be from seawater sediments or from the aquifer matrix as a result of water–rock interactions (such as carbonate mineral dissolution and ion exchange reactions) induced by mixing fresh groundwater with intruding seawater. We hypothesize that CGD maybe an additional source of phosphorus (a limiting nutrient) to the coastal wetlands of the southern Everglades.

Keywords

coastal groundwater discharge Everglades phosphorus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, A. R., Frankovich, T. A., Fourqurean, J. W. 2006Variable responses within epiphytic and benthic microalgal communities to nutrient enrichmentHydrobiologia569401421Google Scholar
  2. Armitage, A. R., Frankovich, T. A., Heck, K. L. J., Fourqurean, J. W. 2005Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida BayEstuaries28422434Google Scholar
  3. Back, W., Hanshaw, B. B., Herman, J. S., Driel, J. N. 1986Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, MexicoGeology14137140CrossRefGoogle Scholar
  4. Bear, J., Cheng, A. H. -D., Sorek, S., Ouazar, D., Herrera, I. 1999Fresh Water-Salt Water Interface in Coastal Aquifers: Concepts, Methods, and PracticesKluwerDordrecht, The NetherlandsGoogle Scholar
  5. Boyer, J. N., Fourqurean, J. W., Jones, R. D. 1999Seasonal and long-term trends in the water quality of Florida Bay (1890–1997)Estuaries22417430CrossRefGoogle Scholar
  6. Chambers, R. M., Fourqurean, J. W., Macko, S. A., Hoppenot, R. 2001Biogeochemical effects of iron availability on primary producers in a shallow carbonate environmentLimnology and Oceanography4612781286CrossRefGoogle Scholar
  7. Chen, R., Twilley, R. R. 1999Patterns of Mangrove Forest Structure and soil nutrient dynamics along the Shark River Estuary, FloridaEstuaries22955970CrossRefGoogle Scholar
  8. Cooper, H. H. J. 1959A hypothesis concerning the dynamic balance of fresh water and salt water in a Coastal AquiferJournal of Geophysical Research64461467Google Scholar
  9. Davis, S. M. 1994

    Phosphorus inputs and vegetation sensitivity in the Everglades

    Davis, S. M.Odgen, J. C. eds. Everglades: The ecosystem and its restorationSt. Lucie PressBoca Rotan357378
    Google Scholar
  10. Kanel, J., Morse, J. W. 1978The chemistry of orthophosphate uptake from seawater onto calcite and aragoniteGeochimica et Cosmochimica Acta4213351340CrossRefGoogle Scholar
  11. Du Commun, J. 1828On the causes of fresh water springs, fountains, etcAmerican Journal of Science14174176Google Scholar
  12. Fish, J. E. & M. Stewart, 1991. Hydrogeology of the surficial aquifer system, Dade County, Florida: USGS Water-Resources Investigations Report 90-4108.Google Scholar
  13. Fitterman, D. V., M. Deszcz-Pan & C. E. Stoddard, 1999. Results of time-domain electromagnetic soundings in Everglades National Park Florida. Denver: USGS Open-File Report 99-426.Google Scholar
  14. Fourqurean, J. W., Powell, G. V. N., Zieman, J. C. 1992Relationships between porewater nutrients and seagrasses in a subtropical carbonate environmentMarine Biology1145765Google Scholar
  15. Fourqurean, J. W., Robblee, M. B. 1999Florida bay: a history of recent ecological changesEstuaries22345357CrossRefGoogle Scholar
  16. Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandran, K., Childers, D. L., Trexler, J. C., Jones, R. D. 2004Phosphorous in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetlandWater Research38507516PubMedCrossRefGoogle Scholar
  17. Ghyben, B. W. 1888Nota in verband met de vorrgenomen putboring nabij AmsterdamTijdschrift van Let Koninklijk Institute van IngeneiursThe Hague822Google Scholar
  18. Gil, M., Armitage, A. R., Fourqurean, J. W. 2006Nutrient impacts on epifaunal density and species composition in a subtropical seagrass bedHydrobiologia569437447Google Scholar
  19. Herzberg, B. 1901Die Wasserverzorgung einiger NordseebadenJ. Gasbelechntung und Wasserversorgung44815819Google Scholar
  20. Hittle, C., E. Patino & M. Zucker, 2001. Freshwater Flow from Estuarine Creeks into Northeastern Florida Bay, USGS Water Resources Investigations Report 01-4164.Google Scholar
  21. Klein, H. & B. G. Waller, 1985. Synopsis of saltwater intrusion in Dade County, Florida, through 1984. USGS Water-Resources Investigations Report 85-410.Google Scholar
  22. Kohout, F. A. 1960Cyclic flow of salt water in the Biscayne Aquifer of Southeastern FloridaJournal of Geophysical Research6521332141CrossRefGoogle Scholar
  23. Kohout, F. A., 1964. Flow of freshwater and saltwater in the Biscayne aquifer of the Miami area, Florida, USGS Water-Supply Paper 1613-C, C12–C32.Google Scholar
  24. Konikow, L. F., Reilly, T. E. 1999

    Seawater intrusion in the United States

    Bear, J.Cheng, H.-D.Soerk, S.Ouazar, D.Herrera,  eds. Seawater intrusion in coastal aquifers: concepts, methods, and practicesKluwer Academic PublishersDordrecht, The Netherlands463506
    Google Scholar
  25. Light, S. S., Dineen, J. W. 1994

    Water control in the Everglades: a historical perspective

    Davis, S. M.Odgen, J. C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL4784
    Google Scholar
  26. Millero, F., Huang, F., Zhu, X., Liu, X., Zhang, J. -Z. 2001Adsorption and desorption of phosphate on calcite and aragonite in seawaterAquatic Geochemistry73356CrossRefGoogle Scholar
  27. Moore, W. S. 1999The subterranean estuary: a reaction zone of ground water and sea waterMarine Chemistry65111125CrossRefGoogle Scholar
  28. Noe, G. B., Scinto, L. J., Taylor, J., Childers, D. L., Jones, R. D. 2003Phosphorous cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radiostope tracing studyFreshwater Biology4819932008CrossRefGoogle Scholar
  29. Parker, G. G., G. E. Gerguson, S. K. Love, et al., 1955. Water resources of Southeastern Florida with special reference to geology and groundwater of the Miami areas. USGS Water-Supply Paper 1255, 965 pp.Google Scholar
  30. Price, R. M., 2001. Geochemical determinations of groundwater flow in Everglades National Park. In: Marine Geology and Geophysics. University of Miami, Miami, 307 pp.Google Scholar
  31. Price, R. M., Herman, J. S. 1991Geochemical investigation of salt-water intrusion into a coastal carbonate aquifer; Mallorca, SpainGSA Bulletin10312701279CrossRefGoogle Scholar
  32. Price, R. M. & P. K. Swart, 2006. Geochemical indicators of groundwater recharge in the Surficial Aquifer System, Everglades National Park, Florida, USA. In Harmon, R. S. & C. Wicks (eds), Perspectives on karst geomorphology, hydrology and geochemistry—A tribute volume to Derek C. Ford and William B. White: Geological Society of America Special Paper 404, doi: 10.1130/2006.2404(21).Google Scholar
  33. Price, R. M., Top, Z., Happell, J. D., Swart, P. K. 2003Use of tritium and helium to define groundwater flow conditions in Everglades National ParkWater Resources Research391267CrossRefGoogle Scholar
  34. Reese, R. S. & K. J. Cunningham, 2000. Hydrogeology of the Gray Limestone Aquifer in Southern Florida: 1–78. USGS Water-Resources Investigation Report 99-4213.Google Scholar
  35. Rudnick, D., Chen, Z., Childers, D. L., Boyer, J. N., Fontaine, T. D. I. 1999Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades WatershedEstuaries22398416CrossRefGoogle Scholar
  36. Sivan, O., Yechieli, Y., Herut, B., Lazarv, B. 2005Geochemical evolution and timescale of seawater intrusion into the coastal aquifer of IsraelGeochimica et Cosmochimica Acta69579592CrossRefGoogle Scholar
  37. Solorzano, L., Sharp, J. H. 1980Determination of total dissolved phosphorus and particulate phosphorus in natural watersLimnology and Oceanography25754758CrossRefGoogle Scholar
  38. Sonenshein, R. S., 1997. Delineation and extent of saltwater intrusion in the Biscayne Aquifer, Eastern Dade County, Florida. USGS Water-Resour. Invest. Report 96-4285.Google Scholar
  39. Sonenshein, R. S., & E. J. Koszalka, 1996. Trends in water-table altitude (1984–93) and saltwater intrusion (1974–93) in the Biscayne aquifer, Dade County, Florida: 2 sheets: USGS Open-File Report 95-705.Google Scholar
  40. Stumm, W., Morgan, J. J. 1996Aquatic Chemistry3John Wiley and Sons, Inc.New YorkGoogle Scholar
  41. Sutula, M., Day, J. W., Cable, J., Rudnick, D. 2001Hydrological and nutrient budgets of freshwater and estuarine wetlands of Taylor Slough in Southern Everglades, Florida (U.S.A.)Biogeochemistry56213287CrossRefGoogle Scholar
  42. Top, Z., Brand, L. E., Corbett, R. D., Burnett, W., Chanton, J. P. 2001Helium and Radon as tracers of groundwater input into Florida BayJournal of Coastal Research17859868Google Scholar
  43. Younger, P. L. 1996Submarine groundwater dischargeNature382121122CrossRefGoogle Scholar
  44. Zhou, M., Li, Y. 2001Phosphorus-sorption characteristics of calcareous soils and limestone from the southern Everglades and Adjacent FarmlandsSoil Scientists Society of American Journal6514041412CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • René M. Price
    • 1
  • Peter K. Swart
    • 2
  • James W. Fourqurean
    • 3
  1. 1.Department of Earth Sciences and Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  2. 2.Rosenstiel School of Marine and Atmospheric Sciences, Marine Geology and GeophysicsUniversity of MiamiMiamiUSA
  3. 3.Department of Biological Sciences and Southeast Environmental Research CenterFlorida International UniversityMiamiUSA

Personalised recommendations