Advertisement

Hydrobiologia

, Volume 568, Issue 1, pp 187–205 | Cite as

Inter-genotype variation in reproductive response to crowding among Daphnia pulex

  • Jay M. Fitzsimmons
  • David J. Innes
Primary Research Paper

Abstract

Crowding is known to have a major influence on reproduction in the freshwater microcrustacean Daphnia pulex. We analyzed reproductive output of six different D. pulex genotypes under two different density regimes in the laboratory. Four of these genotypes reproduce via obligate parthenogenesis, allowing thorough analysis of the life history strategies of some asexual lines. Among 30,109 neonate offspring and 1041 resting egg ephippia collected, several trends were evident. Crowding induced increased resting egg production and reduced neonate offspring production among all genotypes. Offspring sex ratios grew more male-biased with maternal age. The extent, but not direction, of each of these trends varied among genotypes. Offspring sex ratios, and the very direction in which they changed in response to crowding, differed significantly among genotypes with some genotypes producing more and others fewer males in response to crowding. Obligately parthenogenetic genotypes seemed to respond to the crowding stimulus in similar ways as the facultatively parthenogenetic genotypes, as expected from the sexual origins of their genomes. The inter-genotype variation in life-history traits observed in this and other investigations calls into question the common practice of extrapolating results from a single Daphnia genotype to an entire species. Our findings are considered in the context of other research in the field of environmental influences on Daphnia reproduction with a review of representative literature.

Keywords

Daphnia pulex crowding stress reproduction offspring sex ratio inter-genotype variation maternal age 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev V. and Lampert W. (2001). Maternal control of resting-egg production in Daphnia. Nature 414: 899–901PubMedCrossRefGoogle Scholar
  2. Antunes S. C., Castro B. B. and Gonçalves F. (2003). Chronic responses of different clones of Daphnia longispina (field and ephippia) to different food levels. Acta Oecologica 24: S325–S332CrossRefGoogle Scholar
  3. Baird D. J., Barber I., Bradley M., Soares A. M. V. M. and Calow P. (1991). A comparative study of genotype sensitivity to acute toxic stress using clones of Daphnia magna Straus. Ecotoxicology and Environmental Safety 21: 257–265PubMedCrossRefGoogle Scholar
  4. Banta A. M. and Brown L. A. (1929). Control of sex in Cladocera. I. crowding the mothers as a means of controlling male production. Physiological Zoölogy 2: 80–92Google Scholar
  5. Barker D. M. and Hebert P. D. N. (1986). Secondary sex ratio of the cyclic parthenogen Daphnia magna (Crustacea: Cladocera) in the Canadian Arctic. Canadian Journal of Zoology 64: 1137–1143Google Scholar
  6. Bensch S., Westerdahl H., Hansson B. and Hasselquist D. (1999). Do females adjust the sex of their offspring in relation to the breeding sex ratio?. Journal of Evolutionary Biology 12: 1104–1109CrossRefGoogle Scholar
  7. Berg L. M., Pálsson S. and Lascoux M. (2001). Fitness and sexual response to population density in Daphnia pulex. Freshwater Biology 46: 667–677CrossRefGoogle Scholar
  8. Betancourt A. J. and Presgraves D. C. (2002). Linkage limits the power of natural selection in Drosophila. Proceedings of the National Academy of Sciences USA 99: 13616–13620CrossRefGoogle Scholar
  9. Boersma M. and Spaak P. (1999). Environmental stress and local adaptation in Daphnia magna. Limnology and Oceanography 44: 393–402CrossRefGoogle Scholar
  10. Boersma M. and Spaak P. (1998). Predator-mediated plasticity in morphology, life history and behavior of Daphnia: the uncoupling of responses. American Naturalist 152: 237–248CrossRefPubMedGoogle Scholar
  11. Brewer M. C. (1998). Mating behaviours of Daphnia pulicaria, a cyclic parthenogen: comparisons with copepods. Philosophical Transactions of the Royal Society of London B 353: 805–815CrossRefGoogle Scholar
  12. Burns C. W. (1995). Effects of crowding and different food levels on growth and reproductive investment of Daphnia. Oecologia 101: 234–244CrossRefGoogle Scholar
  13. Cáceres C. E. and Tessier A. J. (2004). Incidence of diapause varies among populations of Daphnia pulicaria. Oecologia 141: 425–431PubMedCrossRefGoogle Scholar
  14. Carmona M. J., Serra M. and Miracle M. R. (1993). Relationships between mixis in Brachionus plicatilis and preconditioning of culture medium by crowding. Hydrobiologia 255/256: 145–152CrossRefGoogle Scholar
  15. Carvalho A. B., Sampaio M. C., Varandas F. R. and Klaczko L. B. (1998). An experimental demonstration of Fisher’s Principle: evolution of sexual proportion by natural selection. Genetics 148: 719–731PubMedGoogle Scholar
  16. Carvalho G. R. and Hughes R. N. (1983). The effect of food availability, female culture-density and photoperiod on ephippia production in Daphnia magna Straus (Crustacea: Cladocera). Freshwater Biology 13: 37–46CrossRefGoogle Scholar
  17. Chadwick W. and Little T. J. (2005). A parasite-mediated life-history shift in Daphnia magna. Proceedings of the Royal Society of London B 272: 505–509CrossRefGoogle Scholar
  18. Cleuvers M., Goser B. and Ratte H.-T. (1997). Life-history shift by intraspecific interaction in Daphnia magna: change in reproduction from quantity to quality. Oecologia 110: 337–345CrossRefGoogle Scholar
  19. Crease T. J. and Hebert P. D. N. (1983). A test for the production of sexual pheromones by Daphnia magna (Crustacea: Cladocera). Freshwater Biology 13: 491–496CrossRefGoogle Scholar
  20. Declerck S. (2005). The study of biodiversity in freshwater habitats: societal relevance and suggestions for priorities in science policy. Hydrobiologia 542: 1–9CrossRefGoogle Scholar
  21. Vanoverbeke J. (1999). An uncoupling of male and sexual egg production leads to reduced inbreeding in the cyclical parthenogen Daphnia. Proceedings of the Royal Society of London B 266: 2471–2477CrossRefGoogle Scholar
  22. Deng H.-W. (1996). Environmental and genetic control of sexual reproduction in Daphnia. Heredity 76: 449–458Google Scholar
  23. Deng H.-W. (1997a). Increase in developmental instability upon inbreeding in Daphnia. Heredity 78: 182–189CrossRefGoogle Scholar
  24. Deng H.-W. (1997b). Photoperiodic response of sexual reproduction in the Daphnia pulex group is reversed in two distinct habitats. Limnology and Oceanography 42: 609–611Google Scholar
  25. Dudycha J. L. (2004). Mortality dynamics of Daphnia in contrasting habitats and their role in ecological divergence. Freshwater Biology 49: 505–514CrossRefGoogle Scholar
  26. (2000). Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Environmental Technology Centre, OttawaGoogle Scholar
  27. Ferrari D. C. and Hebert P. D. N. (1982). The induction of sexual reproduction in Daphnia magna: genetic differences between arctic and temperate populations. Canadian Journal of Zoology 60: 2143–2148CrossRefGoogle Scholar
  28. Fisher R. A. (1930). The Genetical Theory of Natural Selection. Claredon Press, OxfordGoogle Scholar
  29. Fitzsimmons J. M. and Innes D. J. (2005). No evidence of Wolbachia among Great Lakes area populations of Daphnia pulex (Crustacea: Cladocera). Journal of Plankton Research 27: 121–124CrossRefGoogle Scholar
  30. Glazier D. S. (1992). Effects of food, genotype and maternal size and age on offspring investment in Daphnia magna. Ecology 73: 910–926CrossRefGoogle Scholar
  31. Gliwicz Z. M. and Guisande C. (1992). Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oecologia 91: 463–467CrossRefGoogle Scholar
  32. Gustafsson S., Rengefors K. and Hansson L.-A. (2005). Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86: 2561–2567Google Scholar
  33. Hadany L. and Feldman M. W. (2005). Evolutionary traction: the cost of adaptation and the evolution of sex. Journal of Evolutionary Biology 18: 309–314PubMedCrossRefGoogle Scholar
  34. Hebert P. D. N. (1987). Genotypic characteristics of the Cladocera. Hydrobiologia 145: 183–193Google Scholar
  35. Hebert P. D. N., Beaton M. J., Schwartz S. S. and Stanton D. J. (1989). Polyphyletic origins of asexuality in Daphnia pulex. I. breeding-system variation and levels of clonal diversity. Evolution 43: 1004–1015CrossRefGoogle Scholar
  36. Hebert P. D. N. and Crease T. (1983). Clonal diversity in populations of Daphnia pulex reproducing by obligate parthenogenesis. Heredity 51: 353–369Google Scholar
  37. Hobæk A. and Larsson P. (1990). Sex determination in Daphnia magna. Ecology 71: 2255–2268CrossRefGoogle Scholar
  38. Hurlbert S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54: 187–211CrossRefGoogle Scholar
  39. Innes D. J. (1989). Genetics of Daphnia obtusa: genetic load and linkage analysis in a cyclical parthenogen. Journal of Heredity 80: 6–10Google Scholar
  40. Innes D. J. (1997). Sexual reproduction of Daphnia pulex in a temporary habitat. Oecologia 111: 53–60CrossRefGoogle Scholar
  41. Innes D. J. and Dunbrack R. L. (1993). Sex allocation variation in␣Daphnia pulex. Journal of Evolutionary Biology 6: 559–575CrossRefGoogle Scholar
  42. Innes D. J., Fox C. J. and Winsor G. L. (2000). Avoiding the cost of males in obligately asexual Daphnia pulex (Leydig). Proceedings of the Royal Society of London B 267: 991–997CrossRefGoogle Scholar
  43. Innes D. J. and Hebert P. D. N. (1988). The origin and genetic basis of obligate parthenogenesis in Daphnia pulex. Evolution 42: 1024–1035CrossRefGoogle Scholar
  44. Innes D. J., Schwartz S. S. and Hebert P. D. N. (1986). Genotypic diversity and variation in mode of reproduction among populations in the Daphnia pulex group. Heredity 57: 345–355Google Scholar
  45. Innes D. J. and Singleton D. R. (1994). Variation in reproduction and sex allocation among clones of Daphnia pulex. In: Beaumont, A. R. (eds) Genetics and Evolution of Aquatic Organisms, pp 335–342. Chapman and Hall, LondonGoogle Scholar
  46. Innes D. J. and Singleton D. R. (2000). Variation in allocation to sexual and asexual reproduction among clones of cyclically parthenogenetic Daphnia pulex (Crustacea: Cladocera). Biological Journal of the Linnean Society 71: 771–787CrossRefGoogle Scholar
  47. Kerfoot W. C. and Weider L. J. (2004). Experimental paleoecology (resurrection ecology): chasing Van Valen’s Red Queen hypothesis. Limnology and Oceanography 49: 1300–1316CrossRefGoogle Scholar
  48. Kessler K. and Lampert W. (2004). Fitness optimization of Daphnia in a trade-off between food and temperature. Oecologia 140: 381–387PubMedCrossRefGoogle Scholar
  49. Kleiven O. T., Larsson P. and Hobæk A. (1992). Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65: 197–206Google Scholar
  50. Korpelainen H. (1986). The effects of temperature and photoperiod on life history parameters of Daphnia magna (Crustacea: Cladocera). Freshwater Biology 16: 615–620CrossRefGoogle Scholar
  51. Korpelainen H. (1992). Lowered female reproductive effort as an indicator for increased male production and sexuality in Daphnia (Crustacea: Cladocera). Invertebrate Reproduction and Development 22: 281–290Google Scholar
  52. LaMontagne J. M. and McCauley E. (2001). Maternal effects in Daphnia: what mothers are telling their offspring and do they listen?. Ecology Letters 4: 64–71CrossRefGoogle Scholar
  53. Larsson P. (1991). Intraspecific variability in response to stimuli for male and ephippia formation in Daphnia pulex. Hydrobiologia 225: 281–290CrossRefGoogle Scholar
  54. Lass S. and Bittner K. (2002). Facing multiple enemies: parasitised hosts respond to predator kairomones. Oecologia 132: 344–349CrossRefGoogle Scholar
  55. Loaring J. M. and Hebert P. D. N. (1981). Ecological differences among clones of Daphnia pulex Leydig. Oecologia 51: 162–168CrossRefGoogle Scholar
  56. López S. and Domínguez C. A. (2003). Sex choice in plants: facultative adjustment of the sex ratio in the perennial herb Begonia gracilis. Journal of Evolutionary Biology 16: 1177–1185PubMedCrossRefGoogle Scholar
  57. Lürling M., Roozen F. and Goser B. (2003). Response of Daphnia to substances released from crowded congeners and conspecifics. Journal of Plankton Research 25: 967–978CrossRefGoogle Scholar
  58. Lushai G., Loxdale H. D. and Allen J. A. (2003). The dynamic clonal genome and its adaptive potential. Biological Journal of the Linnean Society 79: 193–208CrossRefGoogle Scholar
  59. Lynch M., Spitze K. and Crease T. (1989). The distribution of life-history variation in the Daphnia pulex complex. Evolution 43: 1724–1736CrossRefGoogle Scholar
  60. Lynch M., Weider L. J. and Lampert W. (1986). Measurement of the carbon balance in Daphnia. Limnology and Oceanography 31: 17–33CrossRefGoogle Scholar
  61. Mikulski A., Czernik M. and Pijanowska J. (2005). Induction time and reversibility of changes in Daphnia life history caused by the presence of fish. Journal of Plankton Research 27: 757–762CrossRefGoogle Scholar
  62. Mitchell S. E. and Read A. F. (2005). Poor maternal environment enhances offspring disease resistance in an invertebrate. Proceedings of the Royal Society of London B 272: 2601–2607CrossRefGoogle Scholar
  63. Mitchell S. E., Read A. F. and Little T. J. (2004). The effect of a pathogen epidemic on the genetic structure and reproductive strategy of the crustacean Daphnia magna. Ecology Letters 7: 848–858CrossRefGoogle Scholar
  64. Mitchell S. E., Rogers E. S., Little T. J. and Read A. F. (2005). Host-parasite and genotype-by-environment interactions: temperature modifies potential for selection by a sterilizing pathogen. Evolution 59: 70–80PubMedCrossRefGoogle Scholar
  65. Mu X. and LeBlanc G. A. (2002). Environmental antiecdysteroids alter embryo development in the crustacean Daphnia magna. Journal of Experimental Zoology 292: 287–292PubMedCrossRefGoogle Scholar
  66. Nelson W. A., McCauley E. and Wrona F. J. (2005). Stage-structured cycles promote genetic diversity in a predator-prey system of Daphnia and algae. Nature 433: 413–417PubMedCrossRefGoogle Scholar
  67. (1998). OECD Guidelines for Testing of Chemicals: Daphnia magna Reproduction Test. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  68. Olmstead A. W. and LeBlanc G. A. (2001). Temporal and quantitative changes in sexual reproductive cycling of the cladoceran Daphnia magna by a juvenile hormone analog. Journal of Experimental Zoology 290: 148–155PubMedCrossRefGoogle Scholar
  69. Olmstead A. W. and LeBlanc G. A. (2002). Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. Journal of Experimental Zoology 293: 736–739PubMedCrossRefGoogle Scholar
  70. Paland S., Colbourne J. K. and Lynch M. (2005). Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59: 800–813PubMedCrossRefGoogle Scholar
  71. Peer K. and Taborsky M. (2004). Female ambrosia beetles adjust their offspring sex ratio according to outbreeding opportunities for their sons. Journal of Evolutionary Biology 17: 257–264PubMedCrossRefGoogle Scholar
  72. Pijanowska J. and Kowalczewski A. (1997). Cues from injured Daphnia and from cyclopoids feeding on Daphnia can modify life histories of conspecifics. Hydrobiologia 350: 99–103CrossRefGoogle Scholar
  73. Printes L. B. and Callaghan A. (2003). Intraclonal variability in Daphnia acetylcholinesterase activity: the implications for its applicability as a biomarker. Environmental Toxicology and Chemistry 22: 2042–2047PubMedCrossRefGoogle Scholar
  74. Rice W. R. and Chippindale A. K. (2001). Sexual recombination and the power of selection. Science 294: 555–559PubMedCrossRefGoogle Scholar
  75. Ruvinsky A. O., Perelygin A. A., Lobkov Y. I. and Belyaev D. K. (1986). Factors organising and maintaining polymorphism in a cyclic parthenogenetic species: Daphnia pulex. Heredity 57: 15–22Google Scholar
  76. Salathé P. and Ebert D. (2003). The effects of parasitism and inbreeding on the competitive ability in Daphnia magna: evidence for synergistic epistasis. Journal of Evolutionary Biology 16: 976–985PubMedCrossRefGoogle Scholar
  77. Sanders R. W., Williamson C. E., Stutzman P. L., Moeller R. E., Goulden C. E. and Aoki-Goldsmith R. (1996). Reproductive success of “herbivorous” zooplankton fed algal and nonalgal food resources. Limnology and Oceanography 41: 1295–1305Google Scholar
  78. Sarre S. D., Georges A. and Quinn A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. BioEssays 26: 639–645PubMedCrossRefGoogle Scholar
  79. Serra M., Snell T. W. and Gilbert J. J. (2005). Delayed mixis in rotifers: an adaptive response to the effects of density-dependent sex on population growth. Journal of Plankton Research 27: 37–45CrossRefGoogle Scholar
  80. Simon J.-C., Delmotte F., Rispe C. and Crease T. (2003). Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biological Journal of the Linnean Society 79: 151–163CrossRefGoogle Scholar
  81. Simon J.-C., Rispe C. and Sunnucks P. (2002). Ecology and evolution of sex in aphids. Trends in Ecology and Evolution 17: 34–39CrossRefGoogle Scholar
  82. Ślusarczyk M. (1995). Predator-induced diapause in Daphnia. Ecology 76: 1008–1013CrossRefGoogle Scholar
  83. Spaak P., Denk A., Boersma M. and Weider L. J. (2004). Spatial and temporal patterns of sexual reproduction in a hybrid Daphnia species complex. Journal of Plankton Research 26: 625–635CrossRefGoogle Scholar
  84. Stabell O. B., Ogbebo F. and Primicerio R. (2003). Inducible defences in Daphnia depend on latent alarm signals from conspecific prey activated in predators. Chemical Senses 28: 141–153PubMedCrossRefGoogle Scholar
  85. Stross R. G. (1969). Photoperiod control of diapause in Daphnia. III. Two-stimulus control of long-day, short-day induction. Biological Bulletin 137: 359–374Google Scholar
  86. Tessier A. J. and Cáceres C. E. (2004). Differentiation in sex investment by clones and populations of Daphnia. Ecology Letters 7: 695–703CrossRefGoogle Scholar
  87. Trivers R. L. and Willard D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science 179: 90–92PubMedGoogle Scholar
  88. (2002). Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. U.S. Environmental Protection Agency, WashingtonGoogle Scholar
  89. Valenzuela N., Adams D. C. and Janzen F. J. (2003). Pattern does not equal process: exactly when is sex environmentally determined?. American Naturalist 161: 676–683PubMedCrossRefGoogle Scholar
  90. Vrijenhoek R. C. (1998). Animal clones and diversity: are natural clones generalists or specialists?. BioScience 48: 617–628CrossRefGoogle Scholar
  91. Weber A. and Declerck S. (1997). Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential. Hydrobiologia 360: 89–99CrossRefGoogle Scholar
  92. Weetman D. and Atkinson D. (2002). Antipredator reaction norms for life history traits in Daphnia pulex: dependence on temperature and food. Oikos 98: 299–307CrossRefGoogle Scholar
  93. Weinzierl R. P., Schmidt P. and Michiels N. K. (1999). High fecundity and low fertility in parthenogenetic planarians. Invertebrate Biology 118: 87–94CrossRefGoogle Scholar
  94. Whittingham L. A., Dunn P. O. and Nooker J. K. (2005). Maternal influences on brood sex ratios: an experimental study in tree swallows. Proceedings of the Royal Society of London B 272: 1775–1780CrossRefGoogle Scholar
  95. Winsor G. L. and Innes D. J. (2002). Sexual reproduction in Daphnia pulex (Crustacea: Cladocera): observations on male mating behaviour and avoidance of inbreeding. Freshwater Biology 47: 441–450CrossRefGoogle Scholar
  96. Yampolsky L. Y. (1992). Genetic variation in the sexual reproduction rate within a population of a cyclic parthenogen, Daphnia magna. Evolution 46: 833–837CrossRefGoogle Scholar
  97. Yasumoto K., Nishigami A., Yasumoto M., Kasai F., Okada Y., Kusumi T. and Ooi T. (2005). Aliphatic sulfates released from Daphnia induce morphological defense of phytoplankton: isolation and synthesis of kairomones. Tetrahedron Letters 46: 4765–4767CrossRefGoogle Scholar
  98. Zhang L. and Baer K. N. (2000). The influence of feeding, photoperiod and selected solvents on the reproductive strategies of the water flea, Daphnia magna. Environmental Pollution 110: 425–430PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of WindsorWindsorCanada
  2. 2.Department of BiologyMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations