, Volume 566, Issue 1, pp 139–152 | Cite as

Indicators of ecological change: comparison of the early response of four organism groups to stress gradients

  • Richard K. Johnson
  • Daniel Hering
  • Mike T. Furse
  • Piet F. M. Verdonschot


A central goal in monitoring and assessment programs is to detect change early before costly or irreversible damage occurs. To design robust early-warning monitoring programs requires knowledge of indicator response to stress as well as the uncertainty associated with the indicator(s) selected. Using a dataset consisting of four organism groups (fish, macrophytes, benthic diatoms and macroinvertebrates) and catchment, riparian and in-stream physico-chemical variables from 77 mountain and 85 lowland streams we determined the relationships between indicator response and complex environmental gradients. The upper (>75th percentile) and lower (<25th percentiles) tails of principal component (PC) gradients were used to study the early response of the four organism groups to stress. An organism/metric was considered as an early warning indicator if the response to the short gradients was more robust (higher R2 values, steeper slope and lower error) than the null model (organism response to the full PC gradient). For mountain streams, both fish and macrophyte CA scores were shown to exhibit an early warning response to the upper tail of the 1st PC gradient when compared to the null model. Five of the eight metrics showed better response to the upper tail of the 2nd PC gradient compared to the null model, while only one metric (macrophyte CA scores) showed improvement when compared to the lower tail of the 2nd PC gradient. For lowland streams all four organism-groups showed better response (CA scores) to the upper tail of the PC gradient when compared to the null model. Only one metric (fish CA scores) regressed against the lower tail of the 2nd PC gradient was found to be more robust than the PC2 null model. These findings indicate that the nonlinear relationships of organism/metric response to stress can be used to select potentially robust early warning indicators for monitoring and assessment.


early response streams bioassessment monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbour, M. T., Gerritsen, J., Snyder, B. D., Stribling, J. B. 1998Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish 2EPA/841/B/98-010 U.S. Environmental Protection Agency Office of WaterWashington, DCGoogle Scholar
  2. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council – Establishing a framework for Community action in the field of water policy, Brussels, Belgium, 23 October 2000Google Scholar
  3. Furse, M. T., A. Schmidt-Kloiber, J. Strackbein, J. Davy-Bowker, A. Lorenz, J. van der Molen J. & P. Scarlett, 2004. Results of the sampling programme. A report to the European Commission. Framework V Project STAR (EVK1-CT-2001_00089)Google Scholar
  4. Hill, M. O. 1973Reciprocal averaging: an eigenvector method of ordinationJournal of Ecology61237249CrossRefGoogle Scholar
  5. Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. M. Verdonschot. Assessment of European rivers with diatoms, macrophytes, invertebrates and fish: a comparative metric-based analysis of organism response to stress, submitted manuscriptGoogle Scholar
  6. Hering, D. & J. Strackbein, 2002. STAR stream types and sampling sites. A report to the European Commission. Framework V Project STAR (EVK1-CT-2001_00089)Google Scholar
  7. Holmes, N. T. H., J. R. Newman, S. Chadd, K. J. Rouen, L. Saint & F. H. Dawson, 1999. Mean Trophic Rank: A users manual. R & D Technical Report No. E 38, Environment Agency, Bristol, UKGoogle Scholar
  8. Johnson, R. K., Wiederholm, T., Rosenberg, D. M. 1993

    Freshwater biomonitoring using individual organisms, populations and species assemblages of benthic macroinvertebrates

    Rosenberg, D. M.Resh, V. H. eds. Freshwater Biomonitoring and Benthic MacroinvertebratesChapman and HallNew York40158
    Google Scholar
  9. Johnson, R. K., Hering, D., Furse, M. T., Clarke, R. T. 2006Detection of ecological change using multiple organism groups: metrics and uncertaintyHydrobiologia566115137Google Scholar
  10. Kolkwitz, R., Marsson, M. 1902Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und FaunaMitteilungen Prüfungsanstalt Wasserversorgung und Abwasserreinigung13372Google Scholar
  11. Metcalfe, J. L. 1989Biological water-quality assessment of running waters based on macroinvertebrate communities – history and present status in EuropeEnvironmental Pollution60101139PubMedCrossRefGoogle Scholar
  12. Raven, P. J., N. T. H. Holmes, F. H. Dawson, P. J. A. Fox, M. Everard, I. R. Fozzard & K. J. Rouen, 1998. River habitat quality – the physical character of rivers and streams in the UK and Isle of Man. River Habitat Survey Report Number 2, Environment Agency, Bristol, Scottish Environment Protection Agency, Stirling, Environment and Heritage Service, Belfast, 84 ppGoogle Scholar
  13. SAS1994JMP – Statistics Made Visual, Version 3.1SAS Institute IncCary, NC, USAGoogle Scholar
  14. Stanner, D., Bordeau, P. 1995Europe’s Environment: The Dobris AssessmentEuropean Environment AgencyLuxembourg712Google Scholar
  15. Stevenson, R. J., Bailey, R. C., Harrass, M. C., Hawkins, C. P., Alba-Tercedor, J., Couch, C., Dyer, S., Fulk, F. A., Harrington, J. M., Hunsaker, C. T., Johnson, R. K. 2004

    Designing data collection for ecological assessments

    Barbour, M. -T.Norton, S. B.Preston, H. R.Thornton, K. W. eds. Ecological Assessment of Aquatic Resources: Linking science to decision makingSETACPensacola, FL, USA5584
    Google Scholar
  16. ter Braak, C. F. J. 1988CANOCO – a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal component analysis and redundancy analysis (version 3.15)Agricultural Mathematics GroupWageningen, The NetherlandsGoogle Scholar
  17. ter Braak, C. F. J. 1990Update Notes: CANOCO Version 3.10Agricultural Mathematics GroupWageningen, The NetherlandsGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Richard K. Johnson
    • 1
  • Daniel Hering
    • 2
  • Mike T. Furse
    • 3
  • Piet F. M. Verdonschot
    • 4
  1. 1.Department of Environmental AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of HydrobiologyUniversity of Duisburg-EssenEssenGermany
  3. 3.Centre for Ecology and HydrologyWinfrith Technology CentreDorchester, DorsetUK
  4. 4.Freshwater EcologyAlterra Green World ResearchWageningenThe Netherlands

Personalised recommendations