Hydrobiologia

, Volume 566, Issue 1, pp 477–503 | Cite as

Estimates and comparisons of the effects of sampling variation using ‘national’ macroinvertebrate sampling protocols on the precision of metrics used to assess ecological status

  • Ralph T. Clarke
  • John Davy-Bowker
  • Leonard Sandin
  • Nikolai Friberg
  • Richard K. Johnson
  • Barbara Bis
Article

Abstract

The Water Framework Directive (WFD) of the European Union requires all member countries to provide information on the level of confidence and precision of results in their river monitoring programmes to assess the ecological status class of river sites. As part of the European Union project STAR, the overall effects of sampling variation for a wide range of commonly used metrics and sampling methods were assessed. Replicate samples were taken in each of two seasons at 2–6 sites of varying ecological status class within each of 18 stream types spread over 12 countries, using both the STAR-AQEM method and a national sampling method or, where unavailable, the RIVPACS sampling protocol. The sampling precision of a combination of sampling method and metric was estimated by expressing the replicate sampling variance as a percentage Psamp of the total variance in metric values with a stream type; low values of Psamp indicate high precision. Most metrics had percentage sampling variances less than 20% for all or most stream types and methods. Most national methods including RIVPACS had sampling precisions at least as good as those for the STAR-AQEM method as used in their country at the same sites; the main exceptions were the national methods used in Latvia and Sweden. The national methods used in the Czech Republic, Denmark, France, Poland and the RIVPACS method used in the UK and Austria all had percentage sampling variances of less than 10% for the majority of metrics assessed. In contrast, none of the metrics had percentage sampling variances less than 10% when based on either the Italian (IBE) method, which used bank-side sorting, or the Latvian national method which identifies only a limited set of taxa. Psamp was lowest on average for the two stream types sampled in the Czech Republic using either the PERLA national method or the STAR-AQEM method. Averaged over all stream types and methods, the three Saprobic-based metrics had the lowest average percentage sampling variances (3–6%) amongst the 26 metrics assessed. These estimates of sampling standard deviation can be used to help assess the uncertainty in single or multi-metric systems for estimating site ecological status using the general STAR Bioassessment Guidance Software (STARBUGS) developed within the STAR project.

Keywords

replicate sampling variation uncertainty macroinvertebrate metrics Water Framework Directive RIVPACS STAR-AQEM PERLA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. 2nd edn. EPA/841-B-98-010. U.S. EPA. Office of Water. Washington, DCGoogle Scholar
  2. Bis, B. & P. Usseglio-Polatera, 2004. Species Traits Analysis. European Commission, STAR (Standardisation of river classifications), Deliverable N2, 134 ppGoogle Scholar
  3. Buffagni, A., Erba, S., Cazzola, M., Murray-Bligh, J., Soszka, H., Genoni, P. 2006The STAR common metrics approach to the WFD intercalibration process: Full application for small, lowland rivers in three European countriesHydrobiologia566379399Google Scholar
  4. Clarke, R. T., 2000. Uncertainty in estimates of river quality based on RIVPACS. In: Assessing the biological quality of freshwaters: RIVPACS and similar techniques. Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Freshwater Biological Association, Ambleside: 39–54Google Scholar
  5. Clarke, R. T., 2004. 9th STAR deliverable. Error/uncertainty module software STARBUGS (STAR Bio Assessment Uncertainty Guidance Software) User ManualGoogle Scholar
  6. Clarke, R. T., Furse, M. T., Wright, J. F., Moss, D. 1996Derivation of a biological quality index for river sites: comparison of the observed with the expected faunaJournal of Applied Statistics23311332CrossRefGoogle Scholar
  7. Clarke, R. T., Furse, M. T., Gunn, R. J. M., Winder, J. M., Wright, J. F. 2002Sampling variation in macroinvertebrate data and implications for river quality indicesFreshwater Biology4717351751CrossRefGoogle Scholar
  8. Clarke, R. T. & D. Hering, 2006. Errors and uncertainty in bioassessment methods – major results and conclusions from the STAR project and their application using STARBUGS. Hydrobiologia 566: 433–439Google Scholar
  9. Clarke, R. T., A. Lorenz, L. Sandin, A. Schmidt-Kloiber, J. Strackbein, N. T. Kneebone & P. Haase, 2006. Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. Hydrobiologia 566: 441–459Google Scholar
  10. Council of the European Communities2000Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policyOfficial Journal of the European CommunitiesL327172Google Scholar
  11. Extence, C. A., Balbi, B. M., Chadd, R. P. 1999River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectivesRegulated Rivers: Research and Management15543574CrossRefGoogle Scholar
  12. Furse, M., D. Hering, O. Moog, P. Verdonschot, R. K. Johnson, K. Brabec, K. Gritzalis, A. Buffagni, P. Pinto, N. Friberg, J. Murray-Bligh, J. Kokes, R. Alber, P. Usseglio-Polatera, P. Haase, R. Sweeting, B. Bis, K. Szoszkiewicz, H. Soszka, G. Springe, F. Sporka & I. Krno, 2006. The STAR project: context, objectives and approaches. Hydrobiologia 566: 3–29Google Scholar
  13. Haase, P., Murray-Bligh, J., Lohse, S., Pauls, S., Sundermann, A., Gunn, R., Clarke, R. 2006Assessing the impact of errors in sorting and identifying macroinvertebrate samplesHydrobiologia566505521Google Scholar
  14. Hering, D., Moog, O., Sandin, L., Verdonschot, P. 2004Overview and application of the AQEM assessment systemHydrobiologia516120CrossRefGoogle Scholar
  15. Hose, G., Turak, E., Wadell, N. 2004Reproducibility of AUSRIVAS rapid bioassessments using macroinvertebratesJournal of the North American Benthological Society23126139CrossRefGoogle Scholar
  16. Illies, J. eds. 1978Limnofauna Europaea2Gustav Fischer VerlagStuttgart, New York; Swets and Zeitlinger B.V., Amsterdam532Google Scholar
  17. Johnson, R.K. 1998Spatiotemporal variability of temperate lake macroinvertebrate communities: detection of impactEcological Applications816170CrossRefGoogle Scholar
  18. Murray-Bligh, J. A. D., M. T. Furse, F. H. Jones, R. J. M. Gunn, R. A. Dines & J. F. Wright, 1997. Procedure for collecting and analysing macroinvertebrate samples for RIVPACS. Joint publication by the Institute of Freshwater Ecology and the Environment Agency, 162 ppGoogle Scholar
  19. Ofenböck, T., Moog, O., Gerritsen, J., Barbour, M. 2004A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebratesHydrobiologia516251268CrossRefGoogle Scholar
  20. Ostermiller, J. D., Hawkins, C. P. 2004Effects of sampling error on bioassessments of stream ecosystems: application to RIVPACS-type modelsJournal of the North American Benthological Society23363382CrossRefGoogle Scholar
  21. Pinto, P., Rosado, J., Morais, M., Antunes, I. 2004Assessing methodology for southern siliceous basins in PortugalHydrobiologia516191214CrossRefGoogle Scholar
  22. REFCOND, 2003. Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. Final version, 30 April 2003, produced by WG 2.3Google Scholar
  23. Shannon, C. E., Weaver, W. 1949The Mathematical Theory of CommunicationThe University of Illinois PressUrbana, ILGoogle Scholar
  24. Smith, M. J., Kay, W. R., Edward, D. H. D., Papas, P. J., Richardson, St. J., Simpson, J. C., Pinder, A. M., Cale, D. J., Horwitz, P. H. J., Davis, J. A., Yung, F. H., Norris, R. H., Halse, S. A. 1999AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western AustraliaFreshwater Biology41269282CrossRefGoogle Scholar
  25. Sokal, R. R., Rohlf, J. R. 1995Biometry3Freeman and CompanyNew YorkGoogle Scholar
  26. Taylor, L. R. 1961Aggregation, variance and the meanNature189732735CrossRefGoogle Scholar
  27. Vlek, H. E., 2004. Comparison of (cost) effectiveness between various macroinvertebrate field and laboratory protocols. European Commssion, STAR (Standardisation of river classifications), Deliverable N1, 78 ppGoogle Scholar
  28. Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), 2000. Assessing the Biological Quality of Freshwaters: RIVPACS and Similar Techniques. Freshwater Biological Association, Ambleside, 373 ppGoogle Scholar
  29. Zelinka, M., Marvan, P. 1961Zur Präzisierung der biologischen Klassifikation der Reinheit fließender GewässerArch. Hydrobiol.57389407Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ralph T. Clarke
    • 1
  • John Davy-Bowker
    • 1
  • Leonard Sandin
    • 2
  • Nikolai Friberg
    • 3
  • Richard K. Johnson
    • 2
  • Barbara Bis
    • 4
  1. 1.Centre for Ecology & HydrologyWinfrith Technology CentreDorchester, DorsetUnited Kingdom
  2. 2.Department of Environmental AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of Freshwater EcologyNational Environmental Research InstituteSilkeborgDenmark
  4. 4.Institute of Ecology and Nature Protection, Department of Invertebrate Zoology and HydrobiologyUniversity of ŁodźŁodźPoland

Personalised recommendations