Advertisement

Hydrobiologia

, Volume 566, Issue 1, pp 91–105 | Cite as

A comparison of the European Water Framework Directive physical typology and RIVPACS-type models as alternative methods of establishing reference conditions for benthic macroinvertebrates

  • John Davy-BowkerEmail author
  • Ralph T. Clarke
  • Richard K. Johnson
  • Jiri Kokes
  • John F. Murphy
  • Svetlana Zahrádková
Article

Abstract

The EU Water Framework Directive requires European Union Member States to establish ‘type-specific biological reference conditions’ for streams and rivers. Types can be defined by using either a fixed typology (System-A), defined by ecoregions and categories of altitude, catchment area and geology, or by means of an alternative characterisation (System-B) that can use a variety of physical and chemical factors. Several European countries also have existing RIVPACS-type models that give site (rather than stream type) specific predictions of benthic macroinvertebrate communities. In this paper we compare the Water Framework Directive (WFD) System-A physical typology and three existing European multivariate RIVPACS-type models as alternative methods of establishing reference conditions. This work is carried out in Great Britain – using RIVPACS, Sweden – using SWEPACSRI and the Czech Republic – using PERLA. We found that in all three countries, all seasons and season combinations, and for all biotic indices tested, RIVPACS-type models were more effective (lower standard deviations of O/E ratios) than models based solely on the WFD System-A variables or null models (based on a single expectation for all sites). We also investigated the explanatory power of whole groups of WFD System-A variables and RIVPACS-type model variables, and the explanatory power of individual variables. We found that variables used in the RIVPACS-type models were often better correlates of macroinvertebrate community variation than the WFD System-A variables. We conclude that this is primarily because while the latter use very broad categories of map-derived variables, the former are based on continuous variables selected for their ecological significance.

Keywords

reference condition physical typology RIVPACS SWEPACSRI PERLA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P., Blackburn, J. 1985Chironomidae in the Pennine stream system receiving mine drainage and organic enrichmentHydrobiologia121165172CrossRefGoogle Scholar
  2. Clarke, R. T., Wright, J. F., Furse, M. T. 2003RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of riversEcological Modelling160219233CrossRefGoogle Scholar
  3. Council of the European Communities2000Directive 2000/60/EC, Establishing a Framework for Community Action in the Field of Water PolicyEuropean Commission PE-CONS 3639/1/100 Rev 1LuxembourgGoogle Scholar
  4. CSN 75 7716, 1998. Water quality, biological analysis, determination of saprobic index. Czech Technical State Standard. Czech Standards Institute, Prague, 174 ppGoogle Scholar
  5. Dawson, F. H., Hornby, D. D., Hilton, J. H. 2002A method for the automated extraction of environmental variables to help the classification of rivers in BritainAquatic Conservation: Marine and Freshwater Ecosystems12391403CrossRefGoogle Scholar
  6. Extence, C. A., Balbi, D. M., Chadd, R. P. 1999River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectivesRegulated Rivers Research and Management15543574CrossRefGoogle Scholar
  7. Feminella, J. W. 2000Correspondence between stream macroinvertebrate assemblages and 4 ecoregions of the southeastern USAJournal of the North American Benthological Society19442461CrossRefGoogle Scholar
  8. Furse, M. T. 2000The application of RIVPACS procedures in headwater streams – an extensive and important national resourceWright, J. F.Sutcliffe, D. W.Furse, M. T. eds. Assessing the Biological Quality of Fresh WatersFreshwater Biological AssociationAmbleside7991Google Scholar
  9. Hawkins, C. P., Norris, R. H., Hogue, J. N., Feminella, J. W. 2000Development and evaluation of predictive models for measuring the biological integrity of streamsEcological Applications1014561477CrossRefGoogle Scholar
  10. Hawkins, C. P., Vinson, M. R. 2000Weak correspondence between landscape classifications and stream macroinvertebrate assemblages: implications for bioassessmentJournal of the North American Benthological Society19501517CrossRefGoogle Scholar
  11. Heino, J., Muotka, T., Paavola, R. 2003Determinants of macroinvertebrate diversity in headwater streams: regional and local influencesJournal of Animal Ecology72425434CrossRefGoogle Scholar
  12. Illies, J. 1978Limnofauna EuropaeaGustav Fisher VerlagStuttgartGoogle Scholar
  13. Johnson, R. K., Sandin, L. 2001Development of a Prediction and Classification System for Lake (Littoral) and Stream (Riffle) Macroinvertebrate Communities. StencilDepartment of Environmental Assessment, SLUUppsalaGoogle Scholar
  14. Johnson, R. K., K. Aagaard, K. J. Aanes, N. Friberg, G. M. Gislason, H. Lax & L. Sandin, 2001. Macroinvertebrates. In Skriver, J. (ed), Biological Monitoring in Nordic Rivers and Lakes. TemaNord Environment 513: 43–52Google Scholar
  15. Kokeš, J., Zahrádková, S., Němejcová, D., Hodovský, J., Jarkovský, J., Soldán, T. 2006The PERLA system in the Czech Republic: a multivariate approach for assessing the ecological status of running watersHydrobiologia566343354Google Scholar
  16. Logan, P., Furse, M. 2002Preparing for the European Water Framework Directive – making the links between habitat and aquatic biotaAquatic Conservation: Marine and Freshwater Ecosystems12425437CrossRefGoogle Scholar
  17. Marvan, P., 1969. Primechania k primeneniu statisticheskich metodov po opredeleniu saprobnosti. Symposium SEV Voprosy saprobnosti, Zivohost, 19–43Google Scholar
  18. Moss, D., Furse, M. T., Wright, J. F., Armitage, P. D. 1987The prediction of the macro-invertebrate fauna of unpolluted running-water sites in Great Britain using environmental dataFreshwater Biology174152CrossRefGoogle Scholar
  19. National Water Council1981River Quality: The 1980 Survey and Future OutlookNational Water CouncilLondonGoogle Scholar
  20. Pantle, E., Buck, H. 1955Die biologische Uberwachung der Gewasser und die Darstellung der ErgebnisseGas und Wasserfach.96604Google Scholar
  21. Rabeni, C. F., Doisy, K. E. 2000Correspondence of stream benthic invertebrate assemblages to regional classification schemes in MissouriJournal of the North American Benthological Society19419428CrossRefGoogle Scholar
  22. Rosenberg, D. M., Reynoldson, T. B., Resh, V. H. 2000Establishing reference conditions in the Fraser River catchment, British Columbia, Canada, using the BEAST (BEnthic Assessment of SedimenT) predictive modelWright, J. F.Sutcliffe, D. W.Furse, M. T. eds. Assessing the Biological Quality of Fresh WatersFreshwater Biological AssociationAmbleside181194Google Scholar
  23. Sandin, L., Johnson, R. K. 2000Ecoregions and benthic macroinvertebrate assemblages of Swedish streamsJournal of the North American Benthological Society19462474CrossRefGoogle Scholar
  24. Simpson, J. C., Norris, R. H. 2000Biological assessment of river quality: development of AusRivAS models and outputsWright, J. F.Sutcliffe, D. W.Furse, M. T. eds. Assessing the Biological Quality of Fresh WatersFreshwater Biological AssociationAmbleside125142Google Scholar
  25. Sweeting, R. 2001Classification of ecological status of lakes and rivers – biological elements in the classificationBack, S.Karttunnen, K. eds. Classification of Ecological Status of Lakes and RiversTemaNord Environment 2001:584, Nordic Council of MinistersCopenhagen9Google Scholar
  26. ter Braak, C. J. F., Prentice, I. C. 1988A theory of gradient analysisAdvances in Ecological Research18271317CrossRefGoogle Scholar
  27. ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and CanoDraw for User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca NY, USA), 500 ppGoogle Scholar
  28. Sickle, J., Hughes, R. M. 2000Classification strengths of ecoregions, catchments, and geographical clusters for aquatic vertebrates in OregonJournal of the North American Benthological Society19370384CrossRefGoogle Scholar
  29. Sickle, J., Hawkins, C. P., Larsen, D. P., Herlihy, A. H. 2005A null model for the expected macroinvertebrate assemblage in streamsJournal of the North American Benthological Society24178191CrossRefGoogle Scholar
  30. Verdonschot, P. F. M., Nijboer, R. C. 2004Testing the European stream typology of the Water Framework Directive for macroinvertebratesHydrobiologia5163554CrossRefGoogle Scholar
  31. Waite, I. R., Herlihy, A. T., Larsen, D. P., Klemm, D. J. 2000Comparing strengths of geographic and non-geographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands, USAJournal of the North American Benthological Society19429441CrossRefGoogle Scholar
  32. Wilander, A., R. K. Johnson & W. Goedkoop, 2003. Riksinventering 2000: En synoptisk studie av vattenkemi och bottenfauna i svenksa sjöar och vattendrag. Department of Environmental Assessment, Swedish University of Agricultural Sciences, Uppsala, Report 2003, 1 ppGoogle Scholar
  33. Wright, J. F., Moss, D., Armitage, P. D., Furse, M. T. 1984A preliminary classification of running water sites in Great Britain based on macro-invertebrate species and prediction of community type using environmental dataFreshwater Biology14221256CrossRefGoogle Scholar
  34. Wright, J. F. 2000An introduction to RIVPACSWright, J. F.Sutcliffe, D. W.Furse, M. T. eds. Assessing the Biological Quality of Fresh WatersFreshwater Biological AssociationAmbleside124Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • John Davy-Bowker
    • 1
    Email author
  • Ralph T. Clarke
    • 1
  • Richard K. Johnson
    • 2
  • Jiri Kokes
    • 3
  • John F. Murphy
    • 1
  • Svetlana Zahrádková
    • 4
  1. 1.Centre for Ecology & HydrologyWinfrith Technology CentreDorchester, DorsetUnited Kingdom
  2. 2.Department of Environmental AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.T.G.M. Water Research InstituteBrnoCzech Republic
  4. 4.Department of Zoology and Ecology, Faculty of ScienceMasaryk University BrnoBrnoCzech Republic

Personalised recommendations