Hydrobiologia

, Volume 567, Issue 1, pp 307–327 | Cite as

Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

  • J. Y. Takekawa
  • A. K. Miles
  • D. H. Schoellhamer
  • N. D. Athearn
  • M. K. Saiki
  • W. D. Duffy
  • S. Kleinschmidt
  • G. G. Shellenbarger
  • C. A. Jannusch
Article

Abstract

Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

Keywords

salt evaporation ponds waterbirds San Francisco Bay salt ponds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accurso, L. M., 1992. Distribution and abundance of wintering waterfowl on San Francisco Bay 1988–1990. Master’s Thesis. Humboldt State Univ., Arcata, CA, 252 ppGoogle Scholar
  2. American Public Health Association, 1989. Standard Methods for the Examination of Water and Wastewater, 17th edn. APHA, Washington, D.CGoogle Scholar
  3. Anderson, W. 1970A preliminary study of the relationship of saltponds and wildlife – South San Francisco BayCalifornia Fish and Game56240252Google Scholar
  4. Bray, J. R., Curtis, J. T. 1957An ordination of the upland forest communities of southern WisconsinEcological Monographs27325349CrossRefGoogle Scholar
  5. Britton, R. H., Johnson, A. R. 1987An ecological account of a Mediterranean salina: the Salin de Geraud, Camargue (S. France)Biological Conservation42185230CrossRefGoogle Scholar
  6. Carpelan, L. H. 1957Hydrobiology of the Alviso salt pondsEcology38382385CrossRefGoogle Scholar
  7. Carpenter, S. R. eds. 1988Complex Interactions in Lake CommunitiesSpringer-VerlagNew York283Google Scholar
  8. Clarke, K. R., Warwick, R. M. 2001Change in Marine Communities: An Approach to Statistical Analysis and Interpretation2PRIMER-EPlymouth, EnglandGoogle Scholar
  9. Collazo, J. A., Harrington, B. A., Grear, J. S., Colon, J. A. 1995Abundance and distribution of shorebirds at the Cabo Rojo salt flats, Puerto RicoJournal of Field Ornithology66424438Google Scholar
  10. Cowardin, L. M., Carter, V., Golet, F. C., LaRoe, E. T. 1979Classification of Wetlands and Deepwater Habitats of the United StatesU. S. Department of the Interior, Fish and Wildlife Service, FWS/OBS-79/31Washington, D. CGoogle Scholar
  11. Davis, C. A., Smith, L. M. 1998Ecology and management of migrant shorebirds in the Playa Lakes regionWildlife Monograph140145Google Scholar
  12. Eschmeyer, W. N., Herald, E. S., Hammann, H. 1983A Field Guide to Pacific Coast Fishes of North America from the Gulf of Alaska to Baja CaliforniaHoughton Mifflin CompanyBoston336Google Scholar
  13. Goals Project, 1999. Baylands ecosystem habitat goals. A report of habitat recommendations prepared by the San Francisco Bay Area Wetlands Ecosystem Goals Project. U. S. Environmental Protection Agency, San Francisco, CA and S.F. Bay Regional Water Quality Control Board, Oakland, CA, 209 ppGoogle Scholar
  14. Hammer, U. T. 1986Saline Lake Ecosystems of the WorldDr W. Junk PublishersDordrechtGoogle Scholar
  15. Harvey, T. E., K. J. Miller, R. L. Hothem, M. J. Rauzon, G. W. Page & R. A. Keck, 1992. Status and trends report on the wildlife of the San Francisco Bay estuary. EPA Coop. Agreement CE-009519-01-0 Final Report, U. S. Fish and Wildlife Service, Sacramento, CA, pp. 283Google Scholar
  16. Herbst, D. B. 2001Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt watersHydrobiologia466209219CrossRefGoogle Scholar
  17. Javor, B. 1989Hypersaline Environments: Microbiology and BiogeographySpringer-Verlag BerlinGermany328Google Scholar
  18. Krebs, C. J. 1999Ecological Methodology2Benjamin-CummingsMenlo Park620Google Scholar
  19. Lionberger, M., D. H. Schoellhamer, P. A. Buchanan & S. Meyer, 2004. Box model of a salt pond as applied to the Napa-Sonoma salt ponds, U. S. Geological Survey Water-Resources Investigations Report, 03-4199. San Francisco Bay, CaliforniaGoogle Scholar
  20. Lonzarich, D. G., Smith, J. J. 1997Water chemistry and community structure of saline and hypersaline salt evaporation ponds in San Francisco Bay, CaliforniaCalifornia Fish and Game8389104Google Scholar
  21. Maffei, W., 2000. Brine flies In Olufson, P. (ed.), Baylands ecosystem species and community profiles: life histories and environmental requirements of key plants, fish and wildlife. Prepared by the San Francisco Bay Area Wetlands Ecosystem Goals Project. San Francisco Bay Regional Water Quality Control Board, Oakland, California, pp. 179–182Google Scholar
  22. Matveev, V. 1995The dynamics and relative strength of bottom-up vs top-down impacts in a community of subtropical lake planktonOikos73104108Google Scholar
  23. McGinnis, S. M. 1984Freshwater Fishes of CaliforniaUniversity of California PressBerkeley316Google Scholar
  24. Miller, D. J. & R. N. Lea, 1972. Guide to the coastal marine fishes of California. California Department of Fish and Game, Fish Bulletin 157, 249 ppGoogle Scholar
  25. Morris, R. H., Abbott, D. P., Haderlie, E. C. 1980Intertidal Invertebrates of CaliforniaStanford University PressStanford, California690Google Scholar
  26. Moyle, P. B. 1976Inland Fishes of CaliforniaUniversity of California PressBerkeley405Google Scholar
  27. Page, G. W., Stenzel, L. E., Wolfe, C. M. 1999Aspects of the occurrence of shorebirds on a central California estuaryStudies in Avian Biology21532Google Scholar
  28. Paracuellos, M., Castro, H., Nevado, J. C., Oña, J. A., Matamala, J. J., García, L., Salas, G. 2002Repercussions of the abandonment of Mediterranean saltpans on waterbird communitiesWaterbirds25492498Google Scholar
  29. Persoone, G., Sorgeloos, P. 1980

    General aspects of the ecology and biogeography of Artemia

    Persoone, G.Sorgeloos, P.Roels, O.Jaspers , E. eds. The brine shrimp Artemia, 3. Ecology, culturing, use in aquacultureUniversal PressWetteren323
    Google Scholar
  30. Posey, M., Powell, C., Cahoon, L., Lindquist, D. 1995Top down vs. bottom up control of benthic community composition on an intertidal tideflatJournal of Experimental Marine Biology and Ecology1851931CrossRefGoogle Scholar
  31. SAS Institute1990SAS Procedure Guide, Release 6.04 ednSAS InstituteCary, NCGoogle Scholar
  32. Sherwood, J. E., Stagnitti, F., Kokkinin, M. J., Williams, W. D. 1992A standard table for predicting equilibrium dissolved oxygen concentrations in salt lakes dominated by sodium chlorideInternational Journal of Salt Lake Research116CrossRefGoogle Scholar
  33. Smith, R. I., Carlton, J. T. 1975Light’s Manual: Intertidal Invertebrates of the Central California CoastUniversity of California PressBerkeley, California716Google Scholar
  34. Sokal, R. R., Rohlf, F. J. 1995Biometry3W.H. Freeman and CoNew York887Google Scholar
  35. Sommerfield, P. J., Clarke, K. R., Olsgard, F. 2002A comparison of the power of categorical and correlational tests applied to community ecology data from gradient studiesJournal of Animal Ecology71581593CrossRefGoogle Scholar
  36. Takekawa, J. Y., A. K. Miles, D. H. Schoellhamer, G. M. Martinelli, M. K. Saiki & W. G. Duffy, 2000. Science support for wetland restoration in the Napa-Sonoma salt ponds, San Francisco Bay estuary, 2000 Progress Report. Unpubl. Prog. Rep., U. S. Geological Survey, Davis and Vallejo, CA, 66 ppGoogle Scholar
  37. Takekawa, J. Y., Lu, C. T., Pratt, R. T. 2001Bird communities in salt evaporation ponds and baylands of the northern San Francisco Bay estuaryHydrobiologia466317328CrossRefGoogle Scholar
  38. Velasquez, C. 1992Managing artificial saltpans as a waterbird habitat: species’ response to water level manipulationColonial Waterbirds154355CrossRefGoogle Scholar
  39. Ver Planck, W. E., 1958. Salt in California. Calif. Div. of Mines Bull. No. 175Google Scholar
  40. Warnock, S. E., Takekawa, J. Y. 1995Habitat preferences of wintering shorebirds in a temporally changing environment: western sandpipers in the San Francisco Bay estuaryAuk112920930Google Scholar
  41. Warnock, S. E., Takekawa, J. Y. 1996Wintering site fidelity and movement patterns of western sandpipers Calidris mauri in the San Francisco Bay estuaryIbis138160167Google Scholar
  42. Warnock, N., Page, G. W., Ruhlen, T. D., Nur, N., Takekawa, J. Y., Hanson, J. T. 2002Management and conservation of San Francisco Bay salt ponds: effects of pond salinity, area, tide and season on Pacific Flyway waterbirdsWaterbirds257992Google Scholar
  43. Wetzel, R. G. 1983Limnology,2Saunders College PublishingPhiladelphia, PA753Google Scholar
  44. Wetzel, R. G., Likens, G. E. 1991Limnological Analyses,2Springer-VerlagNew York, NY391Google Scholar
  45. Williams, W. D. 1998Salinity as a determinant of the structure of biological communities in salt lakesHydrobiologia381191201CrossRefGoogle Scholar
  46. Williams, W. D., Boulton, A. J., Taaffe, R. G. 1990Salinity as a determinant of salt lake fauna: a question of scaleHydrobiologia197257266CrossRefGoogle Scholar
  47. Wurtsbaugh, W. A. 1992Food-web modification by an invertebrate predator in the Great Salt Lake (USA)Oecologia89168175Google Scholar
  48. Wurtsbaugh, W. A. 2002Food-web modification by an invertebrate predator in the Great Salt Lake (USA)Oecologia89168175Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. Y. Takekawa
    • 1
  • A. K. Miles
    • 2
  • D. H. Schoellhamer
    • 3
  • N. D. Athearn
    • 1
  • M. K. Saiki
    • 4
  • W. D. Duffy
    • 5
  • S. Kleinschmidt
    • 5
    • 6
  • G. G. Shellenbarger
    • 3
  • C. A. Jannusch
    • 2
  1. 1.U. S. Geological SurveyWestern Ecological Research CenterVallejoUSA
  2. 2.U. S. Geological SurveyWestern Ecological Research CenterDavisUSA
  3. 3.U. S. Geological SurveyWater ResourcesSacramentoUSA
  4. 4.U. S. Geological SurveyWestern Ecological Research CenterDixonUSA
  5. 5.U. S. Geological Survey, California Cooperative Research UnitHumboldt State UniversityArcataUSA
  6. 6.S. KleinschmidtBlue LakeUSA

Personalised recommendations