Hydrobiologia

, Volume 568, Issue 1, pp 67–78 | Cite as

Colonisation patterns and vertical movements of stream invertebrates in the interstitial zone: a case study in the Apennines, NW Italy

  • Tiziano Bo
  • Marco Cucco
  • Stefano Fenoglio
  • Giorgio Malacarne
Primary Research Paper

Abstract

We examined vertical migration and colonisation patterns of stream macroinvertebrates within the substratum of an Apennine creek in NW Italy. Macrobenthos was sampled at three depths in the streambed (0–5, 5–10, 10–15 cm) by means of artificial baskets filled with natural substratum. We placed 42 traps (5×5×15 cm), i.e. 21 top-opened (T-traps) and 21 bottom-opened (B-traps), each composed of three overlapping baskets (high-H, medium-M and low-L), to evaluate differences in the vertical movements. We also collected Surber samples to compare interstitial assemblages with streambed communities. The multilevel traps yielded 42 taxa, compared with 60 taxa in the natural riverbed. Interstitial traps were rapidly colonised; both taxa richness and organism number increased during the 42-day study period. We found active migration in both vertical directions, but there were more invertebrates in the top-opened traps than in the bottom-opened traps. In the T-traps the most colonised baskets were those placed at the H level, while in the B-traps the L level baskets were more rapidly colonised. The interstitial assemblages differed markedly from the streambed communities in both composition and functional organisation, with more collector-gatherers and predators in the interstitial zone and more filterers and scrapers in the natural riverbed. In Apennine lotic systems, the interstitial zone is an important habitat for stream macrobenthos, although it may not be used by all species.

Keywords

interstitial zone macroinvertebrates colonisation vertical movements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agosta P., Bo T., Fenoglio S. and Morisi A. (2001). Brachyptera monilicornis (Pictet, 1842): nuove segnalazioni per il Piemonte (Plecoptera, Taeniopterygidae). Rivista Piemontese di Storia Naturale 22: 151–154 Google Scholar
  2. Boulton A. J. (1989). Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria. Transactions of the Royal Society of South Australia 113: 23–34Google Scholar
  3. Boulton A. J., Findlay S., Marmonier P., Staneley E. H. and Vallet H.M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81CrossRefGoogle Scholar
  4. Bretschko G. (1979). The new research concept of the Biological Station Lunz of the Austrian Academy of Sciences. Stygo News 2: 9–10Google Scholar
  5. Bretschko G. (1981). Vertical distribution of zoobenthos in an alpine brook of the Ritrodat-Lunz study area. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 21: 873–876Google Scholar
  6. Bretschko G. (1985). Quantitative sampling of the fauna of Gravel-Streams (Project Ritrodat-Lunz). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 22: 2049–2052Google Scholar
  7. Bretschko G. (1990). The effect of escape reactions on the quantitative sampling of gravel stream fauna. Archiv für Hydrobiologie 120: 41–49Google Scholar
  8. Bretschko G. (1992). Differentiation between epigeic and hypogeic fauna in gravel streams. Regulated Rivers 7: 17–22Google Scholar
  9. Bretschko G. (1994). Bedsediment extension, grain shape and size distribution. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 25: 1631–1635Google Scholar
  10. Bretschko G. (1995). The ecological importance of stream bedsediments, regardlessof whether or not they are inundated. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Biologia 1: 5–17Google Scholar
  11. Bretschko G. and Leichtfried M. (1988). Distribution of organic matter and fauna in a second order, alpine gravel stream (Ritrodat-Lunz study area, Austria). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 23: 1333–1339Google Scholar
  12. Brittain J. E. and Eikeland T. J. (1988). Invertebrate drift – a review. Hydrobiologia 166: 77–93CrossRefGoogle Scholar
  13. Brunke M. (1999). Colmation and depth filtration within streambeds: retention of particles in hyporheic interstices. International Review of Hydrobiology 84: 99–117Google Scholar
  14. Coleman M. J. and Hynes H. B. N. (1970). The life histories of some Plecoptera and Ephemeroptera in a southern Ontario stream. Canadian Journal of Zoology 48: 1333–1339CrossRefGoogle Scholar
  15. Colwell, R. K., 1997. EstimateS: statistical estimation of species richness and shared species from samples. Version 6.0b1Google Scholar
  16. Collier K. J. and Scarsbrook M. R. (2000). Use of riparian and hyporheic habitats. In: Collier, K. J. and Winterbourn, M. J. (eds) New Zealand Stream Invertebrates: Ecology and Implications for Management, pp 179–206. New Zealand Limnological Society, Christchurch Google Scholar
  17. Resh V. H. (2000). Invertebrates in intermittent and perennial streams: is the hyporheic zone a refuge from drying?. Journal of North American Benthological Society 19: 680–696CrossRefGoogle Scholar
  18. Delucchi C. M. (1989). Movement patterns of invertebrates in temporary and permanent streams. Oecologia 78: 199–207CrossRefGoogle Scholar
  19. Dole-Olivier M. J. and Marmonier P. (1992). Patch distribution of interstitial communities: prevailing factors. Freshwater Biology 27: 177–191CrossRefGoogle Scholar
  20. Dole-Olivier M. J., Marmonier P. and Beffy J. L. (1997). Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium?. Freshwater Biology 37: 257–276CrossRefGoogle Scholar
  21. Dufrêne, M., 1998. IndVal or how to identify indicator species of a sample typology? Version 2.0. User’s Guide and application published at: http: //mrw.wallonie.be/dgrne/sibw/ outils/indval/home.htmlGoogle Scholar
  22. Dufrêne M. and Legendre P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monografy 67: 345–366CrossRefGoogle Scholar
  23. Fenoglio S., Agosta P., Bo T. and Cucco M. (2002). Field experiments on colonisation and movements of stream invertebrates in an Apennine river (Visone, NW Italy). Hydrobiologia 474: 125–130CrossRefGoogle Scholar
  24. Fenoglio S., Bo T., Gallina G. and Cucco M. (2004). Vertical distribution in the water column of drifting stream macroinvertebrates. Journal of Freshwater Ecology 19: 485–492Google Scholar
  25. Gayraud S. and Philippe M. (2003). Influence of bed-sediment features on the interstitial habitat available for macroinvertebrates in 15 French streams. International Review of Hydrobiology 88: 77–93CrossRefGoogle Scholar
  26. Ghetti P. F. (1997). Handbook for the Application of the Extended Biotic Index (In italian) . Provincia autonoma di Trento, Trento, ItalyGoogle Scholar
  27. Giller, P. S. & B. Malmqvist, 1998. The Biology of Streams and Rivers. Oxford University PressGoogle Scholar
  28. Hauer F. R. and Lamberti G. A. (1996). Methods in Stream Ecology. Academic Press, San Diego, CAGoogle Scholar
  29. Hynes H. B. N. (1974). Further studies on the distribution of stream animals within the substratum. Limnology and Oceanography 19: 92–99CrossRefGoogle Scholar
  30. Hynes H. B. N. (1979). The Ecology of Running Waters. Downsview, OntarioGoogle Scholar
  31. Hynes H. B. N. and Coleman M. J. (1968). A simple method of assessing the annual production of stream benthos. Limnology and Oceanographic 13: 569–573Google Scholar
  32. Hose G. C., Jones P. and Lim R. P. (2005). Hyporheic macroinvertebrates in riffle and pool areas of temporary streams in south eastern Australia. Hydrobiologia 532: 81–90CrossRefGoogle Scholar
  33. Huryn A. D. (1996). An appraisal of the Allen paradox in a New Zealand trout stream. Limnology and Oceanographic 41: 243–252CrossRefGoogle Scholar
  34. Kühtreiber, J., 1934. Die Plekopterenfauna Nordtirols. Ph.D. Thesis, University of Innsbruck, Innsbruck, AustriaGoogle Scholar
  35. Jacobi G. Z. and Cary S. J. (1996). Winter stoneflies (Plecoptera) in seasonal habitats in New Mexico, USA. Journal of North American Benthological Society 15: 690–699 CrossRefGoogle Scholar
  36. Leichtfried M. (1991). POM in bedsediments of a gravel stream (RITRODAT-Lunz study area, Austria). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 1921–1925Google Scholar
  37. Leichtfried M. (1994). Protein measurements in bedsediments, an important compartement of POM in a 2nd order gravel stream (Project Ritrodat-Lunz, AUSTRIA, Europe). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 25: 1636–1640Google Scholar
  38. Leichtfried M. (1995). Organic matter in bedsediments – an energy source for lotic ecosystems (a compilation of a long term study). Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Biologia 91: 77–93Google Scholar
  39. Madsen B. L. and Butz I. (1976). Population movements of adult Brachyptera risi (Plecoptera). Oikos 27: 273–280 Google Scholar
  40. Mackay R. J. (1992). Colonization by lotic macroinvertebrates: a review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628Google Scholar
  41. Maridet L., Philippe M., Wasson J. G. and Mathieu J. (1996). Spatial and temporal distribution of stream macroinvertebrates and trophic variables within the bed sediment of three streams differing by their morphology and riparian vegetation. Archiv für Hydrobiologie 136: 41–64Google Scholar
  42. Marmonier P., Dole-Olivier M. J. and Creuze des Chatelliers M. (1992). Spatial distribution of interstitial assemblages in the floodplain of the Rhône River. Regulated Rivers 7: 75–82Google Scholar
  43. Merritt R. W. and Cummins K. W. (1996). An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque, IOGoogle Scholar
  44. Muller K. (1954). Investigations on the organic drift in north Swedish stream. Report Institute of Freshwater Research Drottiningholm 35: 133–148 Google Scholar
  45. Muller K. (1982). The colonization cycle of freshwater insects. Oecologia 52: 202–207CrossRefGoogle Scholar
  46. Müllner A. N. and Schagerl M. (2003). Abundance and vertical distribution of the phytobenthic community within a pool and riffle sequence of an Alpine gravel stream. International Review of Hydrobiology 88: 243–254CrossRefGoogle Scholar
  47. Orghidan T. (1959). Ein neuer Lebensraum des unterirdischen Wassers, der hyporheische biotop. Archiv für Hydrobiologie 55: 392–414Google Scholar
  48. Panek K. L. J. (1991). Migrations of the macrozoobenthos within the bed sediments of a gravel stream (Ritrodat-Lunz study area, Austria). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 1944–1947Google Scholar
  49. Panek K. L. J. (1994). Depth boundaries of bedsediments in an alpine stream (Ritrodat-Lunz study area, Austria). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 25: 1646–1648Google Scholar
  50. Scarsbrook, M. R., 1995. Disturbance and spatial refugia in stream communities. Ph.D. Thesis, University of Otago, Dunedin, New ZelandGoogle Scholar
  51. Schwoerbel J. (1961). Hungarohydracarus subterraneus italicus nov. ssp. die erste Süwasserbilme (Hydracnellae) aus dem hyporheischen Grundwasser. Memorie dell’ Istituto Italiano di Idrobiologia, Pallanza 13: 115–124Google Scholar
  52. Schwoerbel J. (1964). Die Bedeutung des Hyporheals für die benthischen Lebensgemeinschaften des Fliess-gewassers. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 15: 215–226Google Scholar
  53. Söderström O. (1987). Upstream movements of invertebrates in running waters – a review. Archiv für Hydrobiologie 111: 197–208Google Scholar
  54. Townsend C. R. and Hildrew A. G. (1976). Field experiments on the drifting, colonization and continuous redistribution of stream benthos. Journal of Animal Ecology 45: 759–772CrossRefGoogle Scholar
  55. Usseglio-Polatera P., Bournaud M., Richoux P. and Tachet H. (2000). Biological and ecological traits of benthic fresh-water macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205CrossRefGoogle Scholar
  56. Vallett H. M., Hakenkamp C. C. and Boulton A. J. (1993). Perspectives on the hyporheic zone: integrating hydrology and biology. Introduction. Journal of North American Benthological Society 12: 40–43CrossRefGoogle Scholar
  57. Vannote R. L., Minshall G. W., Cummins K. W., Sedell J. R. and Cushing C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137CrossRefGoogle Scholar
  58. Weigelhofer G. and Waringer J. (2003). Vertical distribution of benthic macroinvertebrates in riffles versus deep runs with differing contents of fine sediments (Weidlingbach, Austria). International Review of Hydrobiology 88: 304–313CrossRefGoogle Scholar
  59. Williams D. D. and Hynes H. B. N. (1976). The recolonization mechanisms of stream benthos. Oikos 27: 265–272Google Scholar
  60. White D. S. (1993). Perspectives on defining and delineating hyporheic zones. Journal of North American Benthological Society 12: 61–69CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Tiziano Bo
    • 1
  • Marco Cucco
    • 1
  • Stefano Fenoglio
    • 1
  • Giorgio Malacarne
    • 1
  1. 1.University of Piemonte OrientaleAlessandriaItaly

Personalised recommendations