, Volume 572, Issue 1, pp 89–102 | Cite as

Measures of Nutrient Processes as Indicators of Stream Ecosystem Health

  • James W. Udy
  • Christine S. Fellows
  • Michael E. Bartkow
  • Stuart E. Bunn
  • Joanne E. Clapcott
  • Bronwyn D. Harch


To better understand how freshwater ecosystems respond to changes in catchment land-use, it is important to develop measures of ecological health that include aspects of both ecosystem structure and function. This study investigated measures of nutrient processes as potential indicators of stream ecosystem health across a land-use gradient from relatively undisturbed to highly modified. A total of seven indicators (potential denitrification; an index of denitrification potential relative to sediment organic matter; benthic algal growth on artificial substrates amended with (a) N only, (b) P only, and (c) N and P; and δ15N of aquatic plants and benthic sediment) were measured at 53 streams in southeast Queensland, Australia. The indicators were evaluated by their response to a defined gradient of agricultural land-use disturbance as well as practical aspects of using the indicators as part of a monitoring program. Regression models based on descriptors of the disturbance gradient explained a large proportion of the variation in six of the seven indicators. Denitrification index, algal growth in N amended substrate, and δ15N of aquatic plants demonstrated the best regression. However, the δ15N value of benthic sediment was found to be the best indicator overall for incorporation into a monitoring program, as samples were relatively easy to collect and process, and were successfully collected at more than 90% of the study sites.


denitrification stable nitrogen isotopes chlorophyll a catchment disturbance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abal E. G., S. E. Bunn & W. C. Dennison (eds), 2005. Healthy Waterways, Healthy Catchments: Making the connection in south east Queensland, Australia Moreton Bay Waterways and Catchments Partnership, BrisbaneGoogle Scholar
  2. Addison R. F. and Clarke K. R. (1990). The IOC/GEEP Bermuda workshop. Journal of Experimental Marine Biology and Ecology 138: 1–8CrossRefGoogle Scholar
  3. Anderson J. R. (1993). State of the Rivers Project. Report 1. Development and Validation of the Methodology. Report to the Department of Primary Industries, QueenslandGoogle Scholar
  4. Bartkow M. E. and Udy J. W. (2004). Quantifying potential nitrogen removal by denitrification in stream sediments at a regional scale. Marine and Freshwater Research 55: 309–315CrossRefGoogle Scholar
  5. Bayne B. L., Addison R. F., Capuzzo J. M., Clarke K. R., Moore M. N. and Warwick R. M. (1988). An overview of the GEEP workshop. Marine Ecology Progress Series 46: 235–243Google Scholar
  6. Bunn S. E., Davies P. M. and Mosisch T. D. (1999). Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology 41: 333–345CrossRefGoogle Scholar
  7. Burford M. A. and Longmore A. R. (2001). High ammonium production from sediments in hypereutrophic shrimp ponds. Marine Ecology-Progress Series 224: 187–195CrossRefGoogle Scholar
  8. Costanzo S. D., O’Donohue M. J., Dennison W. C., Loneragan N. R. and Thomas M. (2001). A new approach for detecting and mapping sewage impacts. Marine Pollution Bulletin 42: 149–156PubMedCrossRefGoogle Scholar
  9. Costanzo S., Udy J. W., Longstaff B. and Jones A. (2005). Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Marine Pollution Bulletin 51: 212–217PubMedCrossRefGoogle Scholar
  10. Davies, P. M., 1994. Ecosystem Ecology of Upland Streams of the Northern Jarrah Forest, Western Australia. Ph.D. thesis. The University of Western AustraliaGoogle Scholar
  11. Dennison W. C. and Abal E. G. (1999). Moreton Bay Study: A scientific basis for the healthy waterways campaign. South East Queensland Water Quality Management Strategy, BrisbaneGoogle Scholar
  12. Fellows, C. S., J. E. Clapcott, J. W. Udy, S. E. Bunn, M. J. Smith, B. D. Harch & P. M. Davies, 2006. Benthic metabolism as an indicator of stream ecosystem health. Hydro- biologia (in press)Google Scholar
  13. Fourqurean J. W., Moore T. O., Fry B. and Hollibaugh J. T. (1997). Spatial and temporal variation in C:N:P ratios, delta N−15 and delta C−13 of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA. Marine Ecology-Progress Series 157: 147–157Google Scholar
  14. Hadwen W. L., Bunn S. E., Arthington A. H. and Mosisch T. D. (2005). Within-lake detection of the effects of tourist activities in the littoral zone of oligotrophic dune lakes. Aquatic Ecosystem Health and Management 8: 159–173CrossRefGoogle Scholar
  15. Harris G. P. (1997). Algal biomass and biogeochemistry in catchments and aquatic ecosystems: scaling of processes, models and empirical tests. Hydrobiologia 349: 19–26CrossRefGoogle Scholar
  16. Heggie D. T., Skyring G. W., Orchardo J., Longmore A. R., Nicholson G. J. and Berelson W. M. (1999). Denitrification and denitrifying efficiencies in sediments of Port Phillip Bay: direct determinations of biogenic N-2 and N-metabolite fluxes with implications for water quality. Marine and Freshwater Research 50: 589–596CrossRefGoogle Scholar
  17. Hill B. H., Hall R. K., Husby P., Herlihy A. T. and Dunne M. (2000). Interregional comparisons of sediment microbial respiration in streams. Freshwater Biology 44: 213–222CrossRefGoogle Scholar
  18. Holmes R. M., Jones J. B., Fisher S. G. and Grimm N. B. (1996). Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33: 125–146CrossRefGoogle Scholar
  19. Keithan E. D. and Lowe R. L. (1985). Primary productivity and spatial structure of phytolithic growth in streams in the Great Smoky Mountains National Park, Tennessee (USA). Hydrobiologia 123: 59–68CrossRefGoogle Scholar
  20. Kennard, M. J., B. J. Pusey, A. H. Arthington, B. D. Harch, & S. J. Mackay, 2006. Utility of a multivariate modelling method for prediction of freshwater fish assemblages and evaluation of river health. Hydrobiologia (in press)Google Scholar
  21. Kevern N. R. and Ball R. C. (1965). Primary productivity and energy relationships in artificial streams. Limnology and Oceanography 10: 74–87Google Scholar
  22. Knowles R. (1982). Denitrification. Microbiologial Reviews 46: 43–70 Google Scholar
  23. McClelland J. W. and Valiela I. (1998). Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43: 577–585 Google Scholar
  24. McClelland J. W., Valiela I. and Michener R. H. (1997). Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnology and Oceanography 42: 930–937Google Scholar
  25. McKinney R. A., Lake J. L., Charpentier M. A. and Ryba S. (2002). Using mussel isotope ratios to assess anthropogenic nitrogen inputs to freshwater ecosystems. Environmental Monitoring and Assessment 74: 167–192PubMedCrossRefGoogle Scholar
  26. Mosisch T. D., Bunn S. E. and Davies P. M. (2001). The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology 46: 1269–1278CrossRefGoogle Scholar
  27. Mosisch T. D., Bunn S. E., Davies P. M. and Marshall C. J. (1999). Effects of shade and nutrient manipulation on periphyton growth in a subtropical stream. Aquatic Botany 64: 167–177CrossRefGoogle Scholar
  28. Mulholland P. J., Tank J. L., Webster J. R., Bowden W. B., Dodds W. K., Gregory S. V., Grimm N. B., Hamilton S. K., Johnson S. L., Marti E., McDowell W. H., Merriam J. L., Meyer J. L., Peterson B. J., Valett H. M. and Wollheim W. M. (2002). Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study. Journal of the North American Benthological Society 21: 544–560CrossRefGoogle Scholar
  29. Nishio T., Koike I. and Hattori A. (1983). Estimation of nitrification and denitrification in coastal and estuarine sediments. Applied and Environmental Microbiology 45: 440–450Google Scholar
  30. O’Donohue M. J. H. and Dennison W. C. (1997). Phytoplankton productivity response to nutrient concentrations, light availability and temperature along an Australian estuarine gradient. Estuaries 20: 521–533CrossRefGoogle Scholar
  31. Owens N. J. P. (1985). Variations in the natural abundance of 15N in estuarine suspended particulate matter: a specific indicator of biological processing. Estuarine Coastal and Shelf Science 20: 505–510CrossRefGoogle Scholar
  32. Parsons T. R., Maita Y. and Lalli C. M. (1984). A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, OxfordGoogle Scholar
  33. Peterson B. J. and Fry B. (1987). Stable Isotopes in Ecosystem Studies. Annual Review of Ecology and Systematics 18: 293–320CrossRefGoogle Scholar
  34. Peterson B. J., Wollheim W. M., Mulholland P. J., Webster J. R., Meyer J. L., Tank J. L., Marti E., Bowden W. B., Valett H. M., Hershey A. E., McDowell W. H., Dodds W. K., Hamilton S. K., Gregory S. and Morrall D. D. (2001). Control of nitrogen export from watersheds by headwater streams. Science 292: 86–90PubMedCrossRefGoogle Scholar
  35. Pfenning K. S. and McMahon P. B. (1997). Effect of nitrate, organic carbon and temperature on potential denitrification rates in nitrate-rich riverbed sediments. Journal of Hydrology 187: 283–295CrossRefGoogle Scholar
  36. Rapport D. J., Costanza R. and McMichael A. J. (1998). Assessing ecosystem health. Trends in Ecology & Evolution 13: 397–402CrossRefGoogle Scholar
  37. Rosgen D. L. (1994). A Classification of Natural Rivers. Catena 22: 169–199CrossRefGoogle Scholar
  38. Royer T. V., Tank J. L. and David M. B. (2004). Transport and fate of nitrate in headwater agricultural streams in Illinois. Journal of Environmental Quality 33: 1296–1304PubMedCrossRefGoogle Scholar
  39. Seitzinger S. P. (1988). Denitrification in fresh-water and coastal marine ecosystems: ecological and geochemical significance. Limnology and Oceanography 33: 702–724CrossRefGoogle Scholar
  40. Sloth N. P., Blackburn H., Hansen L. S., Risgaardpetersen N. and Lomstein B. A. (1995). Nitrogen cycling in sediments with different organic loading. Marine Ecology-Progress Series 116: 163–170Google Scholar
  41. Smith, M. J. & A. W. Storey (eds), 2001. Design and Implementation of Baseline Monitoring (DIBM3): Developing an Ecosystem Health Monitoring Program for Rivers and Streams in Southeast Queensland. Report to the South-East Queensland Regional Water Quality Management Strategy, BrisbaneGoogle Scholar
  42. Stebbing A. R. D. and Dethlefsen V. (1992). Introduction to the Bremerhaven workshop on biological effects of contaminants. Marine Ecology Progress Series 91: 1–8Google Scholar
  43. Strauss E. A. and Lamberti G. A. (2000). Regulation of nitrification in aquatic sediments by organic carbon. Limnology and Oceanography 45: 1854–1859 CrossRefGoogle Scholar
  44. Tank J. L. and Dodds W. K. (2003). Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031–1049 CrossRefGoogle Scholar
  45. Tiedje J. M., Simkins S. and Groffman P. M. (1989). Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant and Soil 115: 261–284CrossRefGoogle Scholar
  46. Udy J. W. and Bunn S. E. (2001). Elevated delta N-15 values in aquatic plants from cleared catchments: why? . Marine and Freshwater Research 52: 347–351CrossRefGoogle Scholar
  47. Udy J. W. and Dennison W. C. (1997a). Physiological responses of seagrasses used to identify anthropogenic nutrient inputs. Marine and Freshwater Research 48: 605–614CrossRefGoogle Scholar
  48. Udy J. W. and Dennison W. C. (1997b). Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. Journal of Experimental Marine Biology and Ecology 217: 253–277CrossRefGoogle Scholar
  49. Boers P., Lijklema L. and Sweerts J. (1999). Nitrogen fluxes and processes in sandy and muddy sediments from a shallow eutrophic lake. Water Research 33: 33–42 CrossRefGoogle Scholar
  50. Vanderborght J. and Billen G. (1975). Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification. Limnology and Oceanography 20: 953–961CrossRefGoogle Scholar
  51. Waldron S., Tatner P., Jack I. and Arnott C. (2001). The impact of sewage discharge in a marine embayment: a stable isotope reconnaissance. Estuarine Coastal and Shelf Science 52: 111–115CrossRefGoogle Scholar
  52. Wayland M. and Hobson K. A. (2001). Stable carbon, nitrogen and sulfur isotope ratios in riparian food webs on rivers receiving sewage and pulp-mill effluents. Canadian Journal of Zoology-Revue Canadienne De Zoologie 79: 5–15CrossRefGoogle Scholar
  53. Weiss R. F. and Price B. A. (1980). Nitrous oxide solubility in water and seawater. Marine Chemistry 8: 347–359CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • James W. Udy
    • 1
    • 3
  • Christine S. Fellows
    • 1
  • Michael E. Bartkow
    • 1
  • Stuart E. Bunn
    • 1
  • Joanne E. Clapcott
    • 1
    • 4
  • Bronwyn D. Harch
    • 2
  1. 1.Cooperative Research Centre for Freshwater Ecology, Centre for Riverine LandscapesGriffith UniversityNathanAustralia
  2. 2.CSIRO Mathematical and Information SciencesSt. LuciaAustralia
  3. 3.Centre for Water Studies, School of EngineeringUniversity of QueenslandBrisbaneAustralia
  4. 4.School of ZoologyUniversity of TasmaniaHobartAustralia

Personalised recommendations