, Volume 548, Issue 1, pp 141–151 | Cite as

In situ Quantification of Phytoplankton in Reservoirs Using a Submersible Spectrofluorometer

  • Jakub GregorEmail author
  • Rodan Geriš
  • Blahoslav Maršálek
  • Jiří Heteša
  • Petr Marvan


A submersible in situ spectrofluorometer, which permits the differentiation of four algal groups (green algae, diatoms, cryptophytes and cyanobacteria), was used for phytoplankton monitoring in five reservoirs with varying levels of eutrophication and composition of their phytoplankton communities. Data obtained in situ were compared to standard laboratory methods for phytoplankton quantification; concentration of chlorophyll a and microscopy analysis. A high correlation (r = 0.95, n = 96) between chlorophyll a levels using different methods was found in all types of phytoplankton community. Taxonomic analyses and cell counts were closely related to the ratio of algal classes measured by the in situ spectrofluorometer. The submersible device used in the study measures in a continuous mode, which is advantageous in comparison with discrete sampling. This method appears to be a good tool for water quality management and can be used in the detection of natural horizontal and vertical variability in phytoplankton communities or for the early detection of cyanobacterial blooms. The device used in this study is recommended as a screening tool that enables more effective sampling that can be focused on the localities and depths where changes in phytoplankton composition occur.


Chlorophyll a fluorescence phytoplankton quantification water blooms cyanobacteria water management 


Chl a

chlorophyll a




light emitting diode


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asai, R., Horiguchi, Y., Yoshida, A., McNiven, S., Tahira, P., Ikebukuro, K., Uchiyama, S., Masuda, Y., Karube, I. 2001Detection of phycobilin pigments and their seasonal change in Lake Kasumigaura using a sensitive in situ fluorometric sensorAnalytical Letters3425212533CrossRefGoogle Scholar
  2. Babichenko, S., Kaitala, S., Leeben, A., Poryvkina Seppälä, L. J. 1999Phytoplankton pigments and dissolved organic matter distribution in the Gulf of RigaJournal of Marine Systems236982CrossRefGoogle Scholar
  3. Beutler, M., Wiltshire, K. H., Meyer, B., Moldaenke, C., Luring, C., Meyerhofer, M., Hansen, U. P., Dau, H. 2002A fluorometric method for the differentiation of algal populations in vivo and in situPhotosynthesis Research723953CrossRefGoogle Scholar
  4. Bláha, B., Maršálek, B. 1999Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plantsAlgological Studies9295108Google Scholar
  5. Desiderio, R. A., Moore, C., Lantz, C., Cowles, T. J. 1997Multiple excitation fluorometer for in situ oceanographic applicationsApplied Optics3612891296Google Scholar
  6. Desortová, B. 1981Relationship between chlorophyll-a concentration and phytoplankton biomass in several reservoirs in CzechoslovakiaInternationale Revue der gesamten Hydrobiologie66153169Google Scholar
  7. Falkowski, P., Kiefer, D. A. 1985Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomassJournal of Plankton Research7715731Google Scholar
  8. Gregor, J., Maršálek, B. 2004Freshwater phytoplankton quantifiation by chlorophyll a: a comparative study of in vitro, in vivo and in situ methodsWater Research38517522CrossRefPubMedGoogle Scholar
  9. Hilton, J., Rigg Jaworski, E. G. 1989Algal identification using in vivo fluorescence spectraJournal of Plankton Research116574Google Scholar
  10. Holm-Hansen, O. C. J., Lorenzen, C. J., Holmes, R. W., Strickland, J. D. H. 1965Fluorometric determination of chlorophyllJournal de Conseil pour l’Exploration de la Mer30315Google Scholar
  11. ISO 10260, 1992. Water quality – Measurement of biochemical parameters – Spectrometric determination of the chlorophyll-a concentration. International Organization for Standardization, Geneve, SwitzerlandGoogle Scholar
  12. Jacobsen, T. R. 1978A quantitative method for the separation of chlorophyll a and b from phytoplankton pigments by HPLCMarine Science Communications43347Google Scholar
  13. Kiefer, D. A. 1973Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stressMarine Biology233946CrossRefGoogle Scholar
  14. Leboulanger, C., Dorigo, U., Jacquet, S., Berre, B., Paolini Humbert, G. J. F. 2002Application of a submersible spectrofluorometer for rapid monitoring of freshwater cyanobacterial blooms: a case studyAquatic Microbial Ecology308389Google Scholar
  15. Lee, T. Y., Tsuzuki, M., Takeuchi, T., Yokoyama, K., Karube, K. 1995Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric methodAnalytica Chimica Acta3028187CrossRefGoogle Scholar
  16. Lorenzen, C. J. 1967Determination of chlorophyll and phaeopigments: spectrophotometric equationsLimnology and Oceanography12243246Google Scholar
  17. Marra, J. 1997Analysis of diel variability in chlorophyll fluorescenceJournal of Marine Research55767784CrossRefGoogle Scholar
  18. McMurter, H. J. G., Pick, F. R. 1994Fluorescence characteristics of a natural assemblage of freshwater picocyanobacteriaJournal of Plankton Research16911925Google Scholar
  19. Meyns, S., Illi, R., Ribi, B. 1994Comparison of chlorophyll-a analysis by HPLC and spectrophotometry: Where do the differences come from?Archiv für Hydrobiologie132129139Google Scholar
  20. Millie, D. F., Schofield, O. M. E., Kirkpatrick Johnsen Evens, G. J. G. T. J. 2002Using absorbance and fluorescence spectra to discriminate microalgaeEuropean Journal of Phycology37313322CrossRefGoogle Scholar
  21. Oldham, P. B., Zillioux, E. J., Warner, I. M. 1985Spectral “fingerprinting” of phytoplankton populations by two-dimensional fluorescence and Fourier-transform-based pattern recognitionJournal of Marine Research43893906Google Scholar
  22. Parsons, T. R., Strickland, J. D. H. 1963Discussion of spectrophotometric determination of marine pigments with revised equations for ascertaining chlorophylls and carotenoidsJournal of Marine Research21155163Google Scholar
  23. Poryvkina, L., Babichenko, S., Kaitala, S., Kuosa, H., Shalapjonok, A. 1994Spectral fluorescence signatures in the characterization of phytoplankton community compositionJournal of Plankton Research1613151327Google Scholar
  24. Richards, F. A., Thompson, T. G. 1952The estimation and characterization of planktonic populations by pigment analysis II. A spectrophotometric method for the estimation of plankton pigmentsJournal of Marine Research11156172Google Scholar
  25. Salonen, K., Sarvala, J., Järvinen, M., Langenberg, V., Nuottajärvi, M., Vuorio, K., Chitamwebwa, D. B. R. 1999Phytoplankton in Lake Tanganyika – vertical and horizontal distribution of in vivo fluorescenceHydrobiologia40789103CrossRefGoogle Scholar
  26. Seppälä, J., Balode, M. 1998The use of spectral fluorescence methods to detect changes in the phytoplankton communityHydrobiologia363207217CrossRefGoogle Scholar
  27. SooHoo, J. B., Kiefer, D. A., Collins, D. J., McDermid, I. S. 1986In vivo fluorescence excitation and absorption spectra of marine phytoplankton: IJournal of Plankton Research8197214Google Scholar
  28. Vincent, W. F., Neale, P. J., Richerson, P. J. 1984Photoinhibition: algal responses to bright light during diel stratification and mixing in a tropical alpine lakeJournal of Phycology20201211CrossRefGoogle Scholar
  29. Yentsch, C. S., Phinney, D. A. 1985Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populationsJournal of Plankton Research7617632Google Scholar
  30. Yentsch, C. S., Yentsch, C. M. 1979Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectraJournal of Marine Research37471483Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jakub Gregor
    • 1
    Email author
  • Rodan Geriš
    • 2
  • Blahoslav Maršálek
    • 1
  • Jiří Heteša
    • 1
  • Petr Marvan
    • 1
  1. 1.Department of Experimental Phycology and Ecotoxicology, Institute of BotanyThe Academy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.The Morava River Basin Authority601 75 BrnoCzech Republic

Personalised recommendations