, Volume 546, Issue 1, pp 315–321 | Cite as

A Putative LEA Protein, but no Trehalose, is Present in Anhydrobiotic Bdelloid Rotifers

  • Alan TunnacliffeEmail author
  • Jens Lapinski
  • Brian McGee


Some eukaryotes, including bdelloid rotifer species, are able to withstand desiccation by entering a state of suspended animation. In this ametabolic condition, known as anhydrobiosis, they can remain viable for extended periods, perhaps decades, but resume normal activities on rehydration. Anhydrobiosis is thought to require accumulation of the non-reducing disaccharides trehalose (in animals and fungi) or sucrose (in plant seeds and resurrection plants), which may protect proteins and membranes by acting as water replacement molecules and vitrifying agents. However, in clone cultures of bdelloid rotifers Philodina roseola and Adineta vaga, we were unable to detect trehalose or other disaccharides in either control or dehydrating animals, as determined by gas chromatography. Indeed, trehalose synthase genes (tps) were not detected in these rotifer genomes, suggesting that bdelloids might not have the capacity to produce trehalose under any circumstances. This is in sharp contrast to other anhydrobiotic animals such as nematodes and brine shrimp cysts, where trehalose is present during desiccation. Instead, we suggest that adaptations involving proteins might be more important than those involving small biochemicals in rotifer anhydrobiosis: on dehydration, P. roseola upregulates a hydrophilic protein related to the late embryogenesis abundant (LEA) proteins associated with desiccation tolerance in plants. Since LEA-like proteins have also been implicated in the desiccation tolerance of nematodes and micro-organisms, it seems that hydrophilic protein biosynthesis represents a common element of anhydrobiosis across several biological kingdoms.


late embryogenesis abundant protein trehalose trehalose-6-phosphate synthase LEA protein desiccation tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartels, D., Salamini, F. 2001Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular levelPlant Physiology12713461353CrossRefPubMedGoogle Scholar
  2. Battista, J. R., Park, M.-J., McLemore, A. E. 2001Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccationCryobiology43133139PubMedGoogle Scholar
  3. Benaroudj, N., Lee, D. H., Goldberg, A. L. 2001Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicalsJournal of Biological Chemistry2762426124267CrossRefPubMedGoogle Scholar
  4. Bewley, J. D., Black, M. 1994Seeds: Physiology of Development and GerminationPlenum PressNew YorkGoogle Scholar
  5. Bianchi, G., Gamba, A., Murelli, C., Salamini, F., Bartels, D. 1991Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineumPlant Journal1355359Google Scholar
  6. Blázquez, M. A., Santos, E., Flores, C.-L., Martínez-Zapater, J. M., Salinas, J., Gancedo, C. 1998Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthasePlant Journal13685689PubMedGoogle Scholar
  7. Bray, E. A. 1993Molecular responses to water deficitPlant Physiology10310351040PubMedGoogle Scholar
  8. Browne, J. A. 2001An investigation into the physiological and genetic changes associated with anhydrobiosis in the nematodes Panagrolaimus sp. and Aphelenchus avenaeNational University of IrelandMaynoothPhD ThesisGoogle Scholar
  9. Browne, J., Tunnacliffe, A., Burnell, A. 2002Plant desiccation gene found in a nematodeNature41638CrossRefPubMedGoogle Scholar
  10. Chen, T., Acker, J. P., Eroglu, A., Cheley, S., Bayley, H., Fowler, A., Toner, M. L. 2001Beneficial effect of intracellular trehalose on the membrane integrity of dried mammalian cellsCryobiology43168181CrossRefPubMedGoogle Scholar
  11. Colaço, C., Sen, S., Thangavelu, M., Pinder, S., Roser, B. 1992Extraordinary stability of enzymes dried in trehalose: simplified molecular biologyBio/Technology1010071011CrossRefPubMedGoogle Scholar
  12. Crowe, J. H., Crowe, L. M. 1992Membrane integrity in anhydrobiotic organisms: toward aa mechanism for stabilizing dry cellsSomero, G. N.Osmond Bolis, C. B. C. L. eds. Water and LifeSpringer-VerlagBerlin, Germany87103Google Scholar
  13. Crowe, J. H., Carpenter, J. F., Crowe, L. M. 1998The role of vitrification in anhydrobiosisAnnual Review of Physiology6073103CrossRefPubMedGoogle Scholar
  14. Crowe, J. H., Crowe, L. M., Oliver, A. E., Tsvetkova, N., Wolkers, W., Tablin, F. 2001The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry stateCryobiology4389105CrossRefPubMedGoogle Scholar
  15. Cuming, A. C. 1999LEA proteinsShewry, P. R.Casey, R. eds. Seed ProteinsKluwer AcademicDordrecht, NL753780Google Scholar
  16. Dong, A. C., Prestrelski, S. J., Allison, S. D., Carpenter, J. F. 1995Infrared spectroscopic studies of lyophilization-induced and temperature-induced protein aggregationJournal of Pharmaceutical Sciences84415424PubMedGoogle Scholar
  17. Dure, L.,III 2001Occurrence of a repeating 11-mer amino acid sequence motif in diverse organismsProtein and Peptide Letters8115122CrossRefGoogle Scholar
  18. Eleutherio, E. C. A., Maia, F. M., Pereira, M. D., Degre, R., Cameron, D., Panek, A. D. 1997Induction of desiccation tolerance by osmotic treatment in Saccharomyces uvarum var. carlsbergensisCanadian Journal of Microbiology43495498PubMedGoogle Scholar
  19. Fuchs, E., Cleveland, D. W. 1998A structural scaffolding of intermediate filaments in health and diseaseScience279514519CrossRefPubMedGoogle Scholar
  20. Gadd, G. M., Chalmers, K., Reed, R. H. 1987The role of trehalose in dehydration resistance of Saccharomyces cerevisiaeFEMS Microbiology Letters48249254CrossRefGoogle Scholar
  21. García Castro, A., Tunnacliffe, A. 2000Intracellular trehalose improves osmotolerance but not desiccation tolerance in mammalian cellsFEBS Letters487199202CrossRefPubMedGoogle Scholar
  22. García Castro, A., Lapinski, J., Tunnacliffe, A. 2000Anhydrobiotic engineeringNature Biotechnology18473Google Scholar
  23. Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J., Tunnacliffe, A. 2003Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode proteinJournal of Biological Chemistry2781297712984CrossRefPubMedGoogle Scholar
  24. Guo, N., Puhlev, I., Brown, D. R., Mansbridge, J., Levine, F. 2000Trehalose expression confers desiccation tolerance on human cellsNature Biotechnology18168171CrossRefPubMedGoogle Scholar
  25. Higa, L. M., Womersley, C. Z. 1993New insights into the anhydrobiotic phenomenon – the effects of trehalose content and differential rates of evaporative water-loss on the survival of Aphelenchus avenaeJournal of Experimental Zoology267120129CrossRefGoogle Scholar
  26. Hottiger, T., Boller, T., Wiemken, A. 1987Rapid changes of heat and desiccation tolerance correlated with changes in trehalose content in Saccharomyces cerevisiae cells subjected to temperature shiftsFEBS Letters220113115CrossRefPubMedGoogle Scholar
  27. Hughes, D. W, Galau, G. A. 1989Temporally modular gene expression during cotyledon developmentGenes and Development3358369PubMedGoogle Scholar
  28. Kandror, O., DeLeon, A., Goldberg, A. L. 2002Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperaturesProceedings of the National Academy of Sciences USA9997279732CrossRefGoogle Scholar
  29. Lapinski, J. & A. Tunnacliffe, 2003. Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Letters, in pressGoogle Scholar
  30. Larsen, P. I., Sydnes, L. K., Landfald, B., Strøm, A. R. 1987Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehaloseArchives of Microbiology14717CrossRefPubMedGoogle Scholar
  31. Linders, L. J. M., Wolkers, W. F., Hoekstra, F. A., van’t Riet, K. 1997Effect of added carbohydrates on membrane phase behaviour and survival of dried Lactobacillus plantarumCryobiology353140CrossRefPubMedGoogle Scholar
  32. Madin, K. A. C., Crowe, J. H. 1975Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydrationJournal of Experimental Zoology193335342CrossRefGoogle Scholar
  33. Oliver, M. J., Tuba, Z., Mishler, B. D. 2000The evolution of vegetative desiccation tolerance in land plantsPlant Ecology1585100CrossRefGoogle Scholar
  34. Ooms, J. J. J., Léon-Kloosterziel, K. M., Bartels, D., Koornneef, M., Karssen, C. M. 1993Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thalianaPlant Physiology10211851191PubMedGoogle Scholar
  35. Perry, R. N. 1999Desiccation survival of parasitic nematodesParasitology119S19S30CrossRefPubMedGoogle Scholar
  36. Ricci, C. 1998Anhydrobiotic capabilities of bdelloid rotifersHydrobiologia387/388321326CrossRefGoogle Scholar
  37. Roberts, J. K., DeSimone, N. A., Lingle, W. L., Dure, L. III 1993Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryosPlant Cell5769780CrossRefPubMedGoogle Scholar
  38. Singer, M. A., Lindquist, S. 1998Multiple effects of trehalose on protein folding in vivo and in vitroMolecular Cell1639648CrossRefPubMedGoogle Scholar
  39. Solomon, A., Salomon, R., Paperna, I., Glazer, I. 2000Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable proteinParasitology121409416CrossRefPubMedGoogle Scholar
  40. Tunnacliffe, A., Lapinski, J. 2003Resurrecting van Leeuwenhoek’s rotifers: a reappraisal of the role of disaccharides in anhydrobiosisPhilosophical Transactions of the Royal Society, London B35817551771Google Scholar
  41. Van Leeuwenhoek, A. Letter to Hendrik van Bleyswijk, dated 9th February 1702. In van Rijnberk, G. & L. C. Palm, 1999 (eds), The collected letters of Antoni van Leeuwenhoek. Vol. 14, 1701–1704. Swets and Zeitlinger, Amsterdam: 55–73Google Scholar
  42. Vogel, G., Aeschbacher, R. A., Müller, J., Boller, T., Wiemken, A. 1998Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutantPlant Journal13673683CrossRefPubMedGoogle Scholar
  43. Westh, P., Ramløv, H. 1991Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosisJournal of Experimental Zoology258303311CrossRefGoogle Scholar
  44. Wolkers, W. F., Walker, N. J., Tablin, F., Crowe, J. H. 2001aHuman platelets loaded with trehalose survive freeze-dryingCryobiology427987CrossRefGoogle Scholar
  45. Wolkers, W. F., McReady, S., Brandt, W. F., Lindsey, G. G., Hoekstra, F. A. 2001bIsolation and characterization of a D-7 LEA protein from pollen that stabilises glasses in vitroBiochimica Biophysica Acta1544196206Google Scholar
  46. Womersley, C. Z., Higa, L. M. 1998Trehalose: its role in the anhydrobiotic survival of Ditylenchus myceliophagusNematologica44269291Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of BiotechnologyUniversity of CambridgeCambridgeUK

Personalised recommendations