Hydrobiologia

, Volume 546, Issue 1, pp 239–248 | Cite as

Rotifer Nervous System Visualized by FMRFamide and 5-HT Immunocytochemistry and Confocal Laser Scanning Microscopy

  • Elena A. Kotikova
  • Olga I. Raikova
  • Maria Reuter
  • Margaretha K. S. Gustafsson
Article

Abstract

We present the first results of immunocytochemical (ICC) observations on serotonin (5-HT) and FMRFamide (Phe–Met–Arg–Phe–NH2) immunoreactivity patterns in the rotifer nervous system investigated using a confocal laser scanning microscope (CLSM). Three species of rotifers are studied: Platyias patulus (Plationus patulus, Segers et al., 1993; Hydrobiologia 268: 1–8), Euchlanis dilatata and Asplanchna herrickii. Independently from their systematic position, these species possess similar nerve structures. However, some differences were observed in the innervation of the corona, mastax, foot, and mostly in the pattern of the cerebral neurons. The general numbers of 5-HT-immunoreactive (IR) and FMRFamide-IR neurons are low (10–34), but constant for each species. The sizes of the neurons vary from 2, 5 to 10 μm. From 4 to 14 cerebral neurons lie at different levels and are arranged into an X- or a ring- or a curved arch shape. One or two pairs of neurons are localized along longitudinal nerve cords. Double staining of 5-HT and FMRFamide-IR elements shows no co-localization.

Keywords

Rotifera nervous system serotonin 5-HT FMRFamide immunocytochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarnisalo, A. A., Panula, P. 1995Neuropeptide FF containing efferent projections from the medial hypothalamus of rat: a Phaseolus vulgaris leucoagglutinin studyNeuroscience65175192CrossRefPubMedGoogle Scholar
  2. Coons, A. H., Leduc, E. H., Conolly, J. M. 1955Studies on antibody production. l. A method of the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbitJournal of Experimental Medicine1024960CrossRefPubMedGoogle Scholar
  3. Clément, P. 1977Ultrastructural research on rotifersArchiv für Hydrobiologie8270297Google Scholar
  4. Clément, P. 1980Phylogenetic relationship of rotifers, as derived from photoreceptor morphology and other ultrastructural analysesHydrobiologia7393117CrossRefGoogle Scholar
  5. Geary, T. G., Marks, N. J., Maule, A. G., Bowman, J. W., Alexander-Bowman, S. J., Day, T. A., Larsen, M. J., Kubiak, T. M., Davis, J. P., Thompson, D. P. 1999Pharmacology of FMRFamide-related peptides in helminthsAnnals of the New York Academy of Sciences897212227PubMedGoogle Scholar
  6. Grimmelikhuijzen, C. J., Westfall, J. A. 1995The nervous systems of cnidariansExperientia Supplement72724Google Scholar
  7. Keshmirian, J., Nogrady, T. 1987Histofluorescent labelling of catecholaminergic structures in rotifers (Aschelminthes) in whole animalsHistochemistry87351357CrossRefPubMedGoogle Scholar
  8. Keshmirian, J., Nogrady, T. 1988Histofluorescent labelling of catecholaminergic structures in rotifers (Aschelminthes). II Males of Brachionus plicatilis and structures from sectioned femalesHistochemistry89189192CrossRefPubMedGoogle Scholar
  9. Kotikova, E. A. 1994

    Distribution of catecholamines in the nervous system of Bdelloida (Rotifera)

    Sakharov, D. A. eds. Simple Nervous SystemsISINPushcino2122
    Google Scholar
  10. Kotikova, E. A. 1995Localization and neuroanatomy of catecholaminergic neurons in some rotifer speciesHydrobiologia313/314123127CrossRefGoogle Scholar
  11. Kotikova, E. A. 1997Localization of catecholamines in the nervous system of the order TransversiramidaDoklady Rossiiskoi Akademii Nauk (in Russian)353841843Google Scholar
  12. Kotikova, E. A. 1998Catecholaminergic neurons in the brain of rotifersHydrobiologia387/388135440CrossRefGoogle Scholar
  13. Kotikova, E. A., Raikova,  O. I., Reuter, M., Gustafsson, M. K. S. 2002The nervous and muscular systems in the free-living flatworm Castrella truncata (Rhabdocoela): an immunocytochemical and phalloidin fluorescence studyTissue and Cell34365374CrossRefPubMedGoogle Scholar
  14. Martini, E. 1912Studien über die Konstanz histologischer Elemente. III. Hydatina sentaZeitschrift für wissenschaft- liche Zoologie102425645Google Scholar
  15. Nachtwey, R. 1925Untersuchungen über die Keimbahn Organogenese und Anatomie von Asplanchna.priodonta GosseZeitschrift für wissenschaftliche Zoologie126239492Google Scholar
  16. Nogrady, T., Alai, M. 1983Cholinergic neurotransmission in rotifersHydrobiologia104149153CrossRefGoogle Scholar
  17. Price, D. A., Greenberg, M. A. J. 1977Structure of a molluscan cardioexcitatory neuropeptideScience197670671PubMedGoogle Scholar
  18. Raikova, O. I., Reuter, M., Jondelius, U., Gustafsson, M. K. S. 2000aThe brain of Nemertodermatida as revealed by anti−5-HT and anti-FMRFamide immunostainingsTissue and Cell32358365CrossRefGoogle Scholar
  19. Raikova, O. I., Reuter, M., Jondelius, U., Gustafsson, M. K. S. 2000bAn immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc.sed)Zoomorphology120107118CrossRefGoogle Scholar
  20. Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W., Jondelius, U. 2004Evolution of the nervous system in Paraphanostoma (Acoela)Zoologica Scripta337188CrossRefGoogle Scholar
  21. Raineri, M. 1984Histochemical investigations of Rotifera Bdelloida. I. Localization of cholinesterase activityHistochemical Journal16601616CrossRefPubMedGoogle Scholar
  22. Remane, A. 1929–1933

    Rotatorien

    Bronn, H. G. eds. Klassen and Ordnungen der Tierreichs, IVWinterLeipzig1576
    Google Scholar
  23. Reuter, M., Halton, D. W. 2001

    Comparative neurobiology of Platyhelminthes

    Littlewood, D. T. J.Bray, R. A. eds. Interrelationships of the Platyhelminthes. The Systematics Association Special, Vol. 60Taylor and FrancisLondon & New York239249
    Google Scholar
  24. Reuter, M., Raikova, O. I., Gustafsson, M. K. S. 2001aPatterns in the nervous and muscle systems in the lower flatwormsBelgian Journal of Zoology1314753Google Scholar
  25. Reuter, M., Raikova, O. I., Jondelius, U., Gustafsson, M. K. S., Halton, D. W., Maule, A. G., Shaw, C. 2001bOrganisation of the nervous system in the Acoela: an immunocytochemical studyTissue & Cell33119128Google Scholar
  26. Schneider, L. E., Taghert, P. H. 1988Isolation and characterisation of a Drosophila gene that encodes multiple neuropeptides related to Phe–Met–Arg–Phe–NH2 (FMRFamide)Proceedings of the National Academy of Sciences USA8519931997Google Scholar
  27. Segers, H., Murugan, G., Dumont, H. J. 1993On the taxonomy of the Brachionidae: description of Plationus n. gen. (Rotifera, Monogononta)Hydrobiologia26818Google Scholar
  28. Villeneuve, J., Clément, P. 1971Le neuropile du cerveau de Rotifère: observations ultrastructurales préliminairesJournal de Microscopie Français11108Google Scholar
  29. Ware, R. W., Lopresti, V. 1975Three-dimensional reconstruction from serial sectionsInternational Review of Cytology40325440PubMedGoogle Scholar
  30. Wurdak, E. S., Clément, P., Amsellem, J. 1983Sensory receptors involved in the feeding behaviour of the rotifer Asplanchna brightwelliHydrobiologia104203212CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Elena A. Kotikova
    • 1
  • Olga I. Raikova
    • 1
  • Maria Reuter
    • 2
  • Margaretha K. S. Gustafsson
    • 2
  1. 1.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Department of BiologyAbo Akademi UniversityÅboFinland

Personalised recommendations