Hydrobiologia

, Volume 547, Issue 1, pp 83–90 | Cite as

Bacterioplankton Abundance and Activity in a Small Hypertrophic Stratified Lake

Article

Abstract

Bacterioplankton abundance and production were followed during one decade (1991–2001) in the hypertrophic and steeply stratified small Lake Verevi (Estonia). The lake is generally dimictic. However, a partly meromictic status could be formed in specific meteorological conditions as occurred in springs of 2000 and 2001. The abundance of bacteria in Lake Verevi is highly variable (0.70 to 22 × 106 cells ml−1) and generally the highest in anoxic hypolimnetic water. In 2000–2001, the bacterial abundance in the hypolimnion increased probably due to meromixis. During a productive season, heterotrophic bacteria were able to consume about 10–40% of primary production in the epilimnion. Our study showed that bacterioplankton in the epilimnion was top-down controlled by predators, while in metalimnion bacteria were dependent on energy and carbon sources (bottom-up regulated). Below the thermocline hypolimnetic bacteria mineralized organic matter what led to the depletion of oxygen and created anoxic hypolimnion where rich mineral nutrient and sulphide concentrations coexisted with high bacterial numbers.

Keywords

total number of bacteria bacterioplankton production stratified hypertrophic lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J. H., Harris, R. F. 1986r- and K-selection and microbial ecologyAdv. Microbial Ecol999147Google Scholar
  2. Baines, S. B., Pace, M. L. 1991The production of dissolved organic matter by phytoplankton and its importance to bacteria–patterns across marine and freshwater systemsLimnology and Oceanography3610781090Google Scholar
  3. Bell, R. T., Ahlgren, G. M., Ahlgren, I. 1983Estimating bacterioplankton production by measuring (3H)thymidine incorporation in a eutrophic Swedish lakeApplied and Environmental Microbiology4517091721Google Scholar
  4. Biddanda, B., Ogdahl, M., Cotner, J. 2001Dominance of bacterial metabolism in oligotrophic relative to eutrophic watersLimnology and Oceanography46730739Google Scholar
  5. Camacho, A., Erez, J., Chicote, A., Florin, M., Squires, M. M., Lehmann, C., Bachofen, R. 2001Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the food webAquatic Sciences6391106Google Scholar
  6. Carlsson, P., Caron, D. A. 2001Seasonal variation of phosphorus limitation of bacterial growth in a small lakeLimnology and Oceanography46108120Google Scholar
  7. Edler, L. (ed), 1979. Phytoplankton and Chlorophyll. The Baltic Marine Biologists, 38 pp.Google Scholar
  8. Gasol, J. M. 1994A framework for the assessment of top-down vs bottom-up control of heterotrophic Nanoflagellate abundanceMarine Ecology–Progress Series113291300Google Scholar
  9. Hoch, M. P., Kirchman, D. L. 1993Seasonal and Inter-Annual Variability in Bacterial Production and Biomass in a Temperate EstuaryMarine Ecology–Progress Series98283295Google Scholar
  10. Jespersen, A.-M., Christoffersen, K. 1987Measurements of chlorophyll a from phytoplankton, using ethanol as an extraction solventArchiv für Hüdrobiologie Hydrobiol109445454Google Scholar
  11. Kasprzak, P., Gervais, F., Adrian, R., Weiler, W., Radke, R., Jager, I., Riest, S., Siedel, U., Schneider, B., Bohme, M., Eckmann, R., Walz, N. 2000Trophic characterization, pelagic food web structure and comparison of two mesotrophic lakes in Brandenburg (Germany)International Review of Hydrobiology85167189CrossRefGoogle Scholar
  12. Loopmann, A., 1984. Suuremate Eesti järvede morfomeetrilised andmed ja veevahetus. Tallinn, 150 lk. [Morphometrical data and water exchange of larger Estonian lakes. In Estonian].Google Scholar
  13. Nõges, P. 2005Water and nutrient mass balance of the partly meromictic temperate Lake VereviHydrobiologia5472131Google Scholar
  14. Nõges, T., Kangro, K. 2005Primary production of phytoplankton in a strongly stratified temperate lakeHydrobiologia547105122Google Scholar
  15. Nõges, T., Solovjova, I. 2000The influence of different solvents and extraction regimes on the recovery of chlorophyll a from freshwater phytoplanktonGeophysica36161168Google Scholar
  16. Ott, I., Kõiv, T., Nõges, P., Kisand, A., Järvalt, A., Kirt, E. 2005General description of partly meromictic hypertrophic Lake Verevi, its ecological status, changes during the past eight decades and restoration problemsHydrobiologia547120Google Scholar
  17. Porter, K. G., Feig, Y. S. 1980The use of DAPI for identifying and counting aquatic microfloraLimnology and Oceanography25943948Google Scholar
  18. Reinart, A., Arst, H., Pierson, D.C. 2005Optical properties and light climate in Lake VereviHydrobiologia5474149Google Scholar
  19. Steeman-Nielsen, E. 1952The use of radioactive carbon (14C) for measuring primary production in the seaJournal du Conseil permanent international pour l’exploration del la mer18117140Google Scholar
  20. Weinbauer, M. G., Höfle, M. G. 1998Distribution and life strategies of two bacterial populations in a eutrophic lakeApplied and Environmental Microbiology6437763783PubMedGoogle Scholar
  21. Wicks, R. J., Robarts, R. D. 1987The extraction and purification of DNA labelled with [methyl-3H]thymidine in aquatic bacterial production studiesJournal of Plankton Research911591166Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Zoology and BotanyEstonian Agricultural University,Võrtsjärv Limnological StationRannuEstonia

Personalised recommendations