Hydrobiologia

, Volume 546, Issue 1, pp 29–45 | Cite as

Speciation and Selection without Sex

  • C. William BirkyJr.
  • Cynthia Wolf
  • Heather Maughan
  • Linnea Herbertson
  • Elena Henry
Article

Abstract

More than 100 females of the obligately asexual bdelloid rotifers were isolated from nature and their mitochondrial cox1 genes (encoding cytochrome oxidase subunit 1) were sequenced. Phylogenetic analysis of the sequences showed that most of the isolates fall into 21 clades that show two characteristics of species: they are reciprocally monophyletic and have sequence diversities similar to that of species in other organisms. These clades have been evolving independently in spite of being effectively sympatric, indicating that they are adapted to different ecological niches. In support of this, at least some of the clades differ in morphology, food utilization, and temperature tolerance. We conclude that the bdelloid rotifers have undergone substantial speciation in the absence of sexual reproduction. We also used these sequences to test the prediction that asexual organisms should be subject to relaxed natural selection and hence will accumulate detrimental mutations. In contrast to this prediction, several estimates of the ratio Ka/Ks for the cox1 gene showed that this gene is subject to strong selection in the bdelloid rotifers.

Keywords

cladogenesis speciation asexual reproduction bdelloid rotifer natural selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avise, J. C. 1994Molecular Markers, Natural History and EvolutionChapman & Hall, Inc.New YorkGoogle Scholar
  2. Avise, J. C., Ball, R. M.,Jr. 1990

    Principles of genealogical concordance in species concepts and biological taxonomy

    Futuyama, D.Antonovics, J. eds. Oxford Surveys in Evolutionary BiologyOxford University PressOxford4567
    Google Scholar
  3. Barraclough, T. G., Birky, C. W.,Jr., Burt, A. 2003Diversification in sexual and asexual organismsEvolution5721662172PubMedGoogle Scholar
  4. Barton, N. H., Charlesworth, B. 1998Why sex and recombination?Science28119871990CrossRefGoogle Scholar
  5. Bell, G. 1982The Masterpiece of NatureCroom HelmLondonGoogle Scholar
  6. Birky, C. W. Jr., 1996. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proceedings of the National Academy of Sciences of the United States of America 92: 11331–11338Google Scholar
  7. Birky, C. W. Jr. & J. B. Walsh, 1988. Effects of linkage on rates of molecular evolution. Proceedings of the National Academy of Sciences of the United States of America 85: 6414–6418Google Scholar
  8. Birky, C. W., Maruyama, T., Fuerst, P. 1983An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts and some resultsGenetics103513527PubMedGoogle Scholar
  9. Bohonak, A. J. 2002IBD (Isolation By Distance): a program for analysis of isolation by distanceJournal of Heredity93153154CrossRefPubMedGoogle Scholar
  10. Cáceres, C. E., Soluk, D. A. 2002Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebratesOecologia131402408CrossRefGoogle Scholar
  11. Derry, A. M., Hebert, P. D. N., Prepas, E. E. 2003Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approachLimnology and Oceanography48675685Google Scholar
  12. Donner, J. 1965Ordnung BdelloideaAkademie VerlagBerlin297Google Scholar
  13. Funk, D. J. 1999Molecular systematics of cytochrome oxidase I and 16S from Neochlamisus leaf beetles and the importance of samplingMolecular Biology and Evolution166782PubMedGoogle Scholar
  14. Gabriel, W., Lynch, M., Bürger, R. 1993Muller’s ratchet and mutational meltdownEvolution4717441757Google Scholar
  15. Gilbert, D. G., 1992. SeqApp, a biological sequence editor and analysis program for Macintosh computers. Published electronically on the Internet, available via gopher or anonymous ftp to ftp.biol.indiana.eduGoogle Scholar
  16. Giribet, G., Edgecombe, G. D., Wheeler, W. C. 2001Arthropod phylogeny based on eight molecular loci and morphologyNature413157161CrossRefPubMedGoogle Scholar
  17. Goldman, N., Yang, Z. 1994A codon-based model of nucleotide substitution for protein-coding DNA sequencesMolecular Biology and Evolution11725736PubMedGoogle Scholar
  18. Gómez, A. 2005Molecular ecology of rotifers: from population differentiation to speciationHydrobiologia5468399Google Scholar
  19. Gómez A., G. R. Carvalho & D. H. Lunt, 2000. Phylogeography and regional endemism of a passively dispersing zooplankter: mitochondrial DNA variation in rotifer resting egg banks. Proceedings of the Royal Society of London. Series B, Biological Sciences 267: 2189–2197Google Scholar
  20. Hartman, J. L. I., Garvik, B., Hartwell, L. 2001Principles for the buffering of genetic variationScience29110011004CrossRefPubMedGoogle Scholar
  21. Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. deWaard, 2003. Biological identification through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences 270: 313–321Google Scholar
  22. Hill, W. G., Robertson, A. 1966The effect of linkage on limits to artificial selectionGenetical Research38226231Google Scholar
  23. Hoeh, W., Black, M., Gustafson, R., Bogan, A., Lutz, R., Vrijenhoek, R. 1998Testing alternative hypotheses of Neotrigonia (Bivalvia:Trigonioida) relationships using cytochrome C oxidase subunit I DNA sequencesMalacalogia40267278Google Scholar
  24. Holman, E. W. 1987Recognizability of sexual and asexual species of rotifersSystematic Zoology36381386Google Scholar
  25. Hudson, R. R., Coyne, J. A. 2002Mathematical consequences of the genealogical species conceptEvolution5615571565PubMedGoogle Scholar
  26. Kondrashov, A. S. 1993Classification of hypotheses on the advantage of amphimixisJournal of Heredity84372387PubMedGoogle Scholar
  27. Lynch, M., Blanchard, J. L. 1998Deleterious mutation accumulation in organelle genomesGenetica102/1032939CrossRefGoogle Scholar
  28. Mark Welch, D. B. & M. Meselson, 2001. Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proceedings of the National Academy of Sciences of the United States of America 98: 6720–6724Google Scholar
  29. Maruyama, T., Birky, C. W.,Jr. 1991Effects of periodic selection on gene diversity in organelle genomes and other systems without recombinationGenetics127449451PubMedGoogle Scholar
  30. Moriyama, E. N., Powell, J. R. 1996Intraspecific nuclear DNA variation in DrosophilaMolecular Biology and Evolution13261277PubMedGoogle Scholar
  31. Nei, M., Gojobori, T. 1986Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutionsMolecular Biology and Evolution3418426PubMedGoogle Scholar
  32. Nielsen, R., Yang, Z. 1998Likelihood models for detecting positively selected amino acid sites and applications to the HIV–1 envelope geneGenetics148929936PubMedGoogle Scholar
  33. Posada, D., Crandall, K. A. 1998MODELTEST: testing the model of DNA substitutionBioinformatics14817818CrossRefPubMedGoogle Scholar
  34. Ricci, C. 1984Culturing of some bdelloid rotifersHydrobiologia1124551CrossRefGoogle Scholar
  35. Ricci, C. 1991Comparison of five strains of a parthenogenetic species, Macrotrachela quadricornifera (Rotifera, Bdelloidea)Hydrobiologia211147155CrossRefGoogle Scholar
  36. Ronneberger, D. 1998Uptake of latex beads as size-model for food of planktonic rotifersHydrobiologia387/388445449CrossRefGoogle Scholar
  37. Rosenberg, N. A. 2003The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent modelEvolution5714651477PubMedGoogle Scholar
  38. Rutherford, S. L. 2000From genotype to phenotype: buffering mechanisms and the storage of genetic informationBioEssays2210951105CrossRefPubMedGoogle Scholar
  39. Segers, H. 2002The nomenclature of the Rotifera: annotated checklist of valid family- and genus-group namesJournal of Natural History36631640CrossRefGoogle Scholar
  40. Swofford, D. L., 1998. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  41. Vadstein, O., Oie, G., Olsen, Y. 1993Particle size dependent feeding by the rotifer Brachionus plicatilisHydrobiologia255/256261267CrossRefGoogle Scholar
  42. Yang, Z. 1994Maximum likelihood estimation from DNA sequences with variable rates over sites: approximate methodsJournal of Molecular Evolution39306314CrossRefPubMedGoogle Scholar
  43. Yang, Z. 2000Phylogenetic Analysis by Maximum Likelihood (PAML)University College LondonLondon, EnglandGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • C. William BirkyJr.
    • 1
  • Cynthia Wolf
    • 2
    • 3
  • Heather Maughan
    • 4
    • 5
  • Linnea Herbertson
    • 6
    • 7
  • Elena Henry
    • 8
    • 9
  1. 1.Department of Ecology and Evolutionary Biology and Graduate Interdisciplinary Program in GeneticsThe Universityof Arizona, Biological Sciences WestTucsonUSA
  2. 2.Department of Molecular and Cellular BiologyThe University of Arizona,Biological Sciences WestTucsonUSA
  3. 3.Program in Genetic CounselingThe University of Texas Graduate School of Biomedical SciencesHoustonUSA
  4. 4.Graduate Interdisciplinary Program in GeneticsThe University of Arizona, Biological Sciences WestTucsonUSA
  5. 5.Department of Ecology and Evolutionary BiologyThe University of Arizona, Biological Sciences WestTucsonUSA
  6. 6.Department of Ecology and Evolutionary BiologyThe University of Arizona,Biological Sciences WestTucsonUSA
  7. 7.Aqauria, Inc. Moorpark93021
  8. 8.Department of Molecular and Cellular BiologyThe University of Arizona,Biological Sciences WestTucsonUSA
  9. 9.Elena HenrySierra VistaUSA

Personalised recommendations