Advertisement

Hydrobiologia

, Volume 558, Issue 1, pp 23–30 | Cite as

Dynamics of Long-term Anhydrobiotic Survival of Lichen-dwelling Tardigrades

  • Lorena Rebecchi
  • Roberto Guidetti
  • Simona Borsari
  • Tiziana Altiero
  • Roberto Bertolani
Article

Abstract

It is not rare to find in references that anhydrobiotic tardigrades can survive for more than a century. However, a closer look at the empirical evidence provides very little support that tardigrades are capable of surviving dried for such a long time. In order to resolve this discrepancy, we carried out a study to evaluate the long-term survival of naturally dried tardigrades. A large fragment of dry lichen (Xanthoria parietina) was collected in the field two days after a rainy day in 1999. The dry lichen was stored inside a paper bag in the laboratory at room temperature and humidity and under atmospheric oxygen exposure. Replicates of the dry lichen were re-hydrated after various time periods of storage, with all tardigrades extracted and the survivors enumerated. Five species of tardigrades were found, but two of them only occasionally. Ramazzottius oberhaeuseri, Echiniscus testudo and Echiniscus trisetosus were sufficiently represented for statistical analysis. At the beginning of the experiment 91.1% of R. oberhaeuseri and 71.7% of Echiniscus spp. were alive. R. oberhaeuseri survived up to 1604 days, while Echiniscus spp. lived up to 1085 days. Recovery after four years of anhydrobiosis has to be considered a very good long-term survival, which is important from an ecological and evolutionary point of view.

Keywords

cryptobiosis anhydrobiosis Ramazzottius oberhaeuseri Echiniscus Tardigrada 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aroian, R. V., Carta, L., Kaloshian, I., Sternberg, P. W. 1993A free-living Panagroilamus sp. from Armenia can survive in anhydrobiosis for 8.7 yearsJournal of Nematology25500502PubMedGoogle Scholar
  2. Baumann, H. 1922Die Anabiose der TardigradenZoologischer Anzeiger45501556Google Scholar
  3. Brusca, R. C., Brusca, G. J. 1990InvertebratesSinauer Associates, IncSunderland, MAGoogle Scholar
  4. Clegg, J. S. 1967Metabolic studies of cryptobiosis in encysted embryos of Artemia salina Comparative Biochemistry and Physiology20801809CrossRefGoogle Scholar
  5. Clegg, J. S. 2001Cryptobiosis – a peculiar state of biological organizationComparative Biochemistry and Physiology, Part B128613624Google Scholar
  6. Copley, J. 1999IndestructibleNew Scientist1644546Google Scholar
  7. Cooper, A. F., Gundy, S. D.,Jr. 1971Senescence, quiescence, and anhydrobiosisZuckerman, B. M.Mai, W. F.Rohde, R. A. eds. Plant Parasitic Nematodes. Cytogenetics, Host-Parasite Interactions, and PhysiologyAcademic PressNew York297318Google Scholar
  8. Crowe, J. H. 1975The physiology of cryptobiosis in tardigradesMemorie dell’Istituto Italiano di Idrobiologia32(Suppl.)3759Google Scholar
  9. Crowe, J. H., Higgins, R. P. 1967The revival of Macrobiotus areolatus (Tardigrada) from the cryptobiotic stateJournal of Experimental Biology193323334Google Scholar
  10. Crowe, J. H., Madin, K. A. 1975Anhydrobiosis in nematodes: evaporative water loss and survivalJournal of Experimental Zoology193323342CrossRefGoogle Scholar
  11. Fielding, M. J. 1951Observations on the length of dormancy in certain plant infecting nematodesProceedings of the Helminthology Society of Washington D.C.18110112Google Scholar
  12. Franceschi, T. 1948Anabiosi nei tardigradiBollettino dei Musei e degli Istituti Biologici dell’Università di Genova224749Google Scholar
  13. Gilbert, J. J. 1974Dormancy in rotifersTransactions of the American Microscopical Society93490513Google Scholar
  14. Goodey, T. 1923Quiescence and reviviscence in nematodes, with special reference to Tylenchus tritici and Tylenchus dispaci Journal of Helminthology14752Google Scholar
  15. Guidetti, R., Jönsson, K. I. 2002Long-term anhydrobiotic survival in semi-terrestrial micrometazoansJournal of Zoology, London257181187CrossRefGoogle Scholar
  16. Jönsson, K. I., Bertolani, R. 2001Facts and fiction about long-term survival in tardigradesJournal of Zoology, London255121123Google Scholar
  17. Jönsson, K. I., Borsari, S., Rebecchi, L. 2001Anhydrobiotic survival in populations of the tardigrades Richtersius coronifer and Ramazzottius oberhaeuseri from Italy and SwedenZoologischer Anzeiger240419423Google Scholar
  18. Jönsson, K. I., Rebecchi, L. 2002Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survivalJournal of Experimental Biology293578584Google Scholar
  19. Keilin, F. R. S. 1959The problem of anabiosis or latent life: history and current conceptsProceedings of the Royal Society of London150149191PubMedCrossRefGoogle Scholar
  20. Lee, D. L. 1961Two new species of cryptobiotic (anabiotic) freshwater nematodes, Actinolaimus hintoni sp. nov. and Dorylaimus keilini sp. nov. (Dorylaimidae)Parasitology51237240Google Scholar
  21. McGlohon, N. E., Sasser, J. N., Sherwood, R. T. 1961Investigation on plant–parasitic nematodes associated with forage crops in North Carolina. Technical Bulletin 148North Carolina Agricultural Experimental Station, North Carolina State CollegeRaleighGoogle Scholar
  22. Örstan, A. 1995Desiccation survival of the eggs of the rotifer Adineta vaga (Davis, 1873)Hydrobiologia313/314373375Google Scholar
  23. Örstan, A. 1998Factors affecting long-term survival of dry bdelloid rotifers: a preliminary studyHydrobiologia387/388327331Google Scholar
  24. Rahm, G. 1921Biologische und physiologische Beiträge zur Kenntnis der MoosfaunaZeitschrift für allgemeine Physiologie20134Google Scholar
  25. Ramløv, H., Westh, P. 2001Cryptobiosis in the eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols, temperature and de novo protein synthesisZoologischer Anzeiger240517523Google Scholar
  26. Ricci, C. 1998Anhydrobiotic capability of bdelloid rotifersHydrobiologia387/388321326Google Scholar
  27. Ricci, C., Vaghi, L., Manzini, M. L. 1987Desiccation of rotifers (Macrotrachela quadricornifera): survival and reproductionEcology6814881494Google Scholar
  28. Shen, M. J., Mudgett, M. B., Schorf, J. W., Clarke, S., Berger,  R. 1995Exceptional seed longevity and robust growth: ancient sacred lotus from ChinaAmerican Journal of Botany8213671380Google Scholar
  29. Sømme, L., Meier, T. 1995Cold tolerance of Tardigrada from Dronning Maud Land, AntarcticaPolar Biology15221224Google Scholar
  30. Steiner, G., Albin, F. E. 1946Resuscitation of the nematode Tylenchus polyhypnus n. sp. after almost 39 years’ dormancyJournal of the Washington Academy of Science369799Google Scholar
  31. Townshend, J. L. 1964Anhydrobiosis in Pratylenchus penetrans Journal of Nematology16282289Google Scholar
  32. Vreeland, R. H. 2000Isolation of a 250 million-year-old bacterium from a primary salt crystalNature407897900PubMedCrossRefGoogle Scholar
  33. Wright, J. C. 1989Desiccation tolerance and water-retentive mechanisms in tardigradesJournal of Experimental Biology142267292Google Scholar
  34. Wright, J. C. 2001Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades?Zoologischer Anzeiger240563582Google Scholar
  35. Wright, J. C., Westh, P., Ramløv, H. 1992Cryptobiosis in TardigradaBiological Review67129Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Lorena Rebecchi
    • 1
  • Roberto Guidetti
    • 1
  • Simona Borsari
    • 1
  • Tiziana Altiero
    • 1
  • Roberto Bertolani
    • 1
  1. 1.Department of Animal BiologyUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations