Advertisement

Hydrobiologia

, Volume 559, Issue 1, pp 395–399 | Cite as

Sex or Sanctuary: How do Asexual Worms Survive the Winter?

  • Richard J. Ladle
  • Peter A. Todd
Primary Research Paper

Abstract

The common and geographically widespread freshwater worm Stylaria lacustris (Linnaeus, 1767) (Oligochaeta: Naididae) typically reproduces asexually through transverse paratomic fission during the spring, summer, and autumn. With the onset of shorter days and colder conditions, S. lacustris becomes a sexually mature simultaneous hermaphrodite and produces resting eggs that are capable of overwintering. However, like many naidid species, S. lacustris shows widespread variation in reproductive mode with some populations never attaining sexual maturity and others apparently exhibiting both sexual and obligately asexual genotypes. How then do obligately asexual genotypes and populations survive the harsh winter conditions? Extensive winter sampling of two, largely obligately, asexual populations of S. lacustris in Oxfordshire, UK, demonstrate that adult individuals can survive over the winter, but at densities way below that normally detected by standard sampling procedures. Laboratory experiments confirm that asexual individuals can survive cold water conditions but not freezing (unlike sexually produced cocoons). The proposed advantage of this seemingly risky reproductive strategy is that naidids like Stylaria, with their remarkably fast asexual reproductive rate, can respond instantly to favourable change in conditions.

Keywords

Naididae Stylaria lacustris winter survival asexual reproduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armendariz, L. C. 2000Population dynamics of Stylaria lacustris (Linnaeus, 1767) (Oligochaeta, Naididae) in Los Talas, ArgentinaHydrobiologia438217226Google Scholar
  2. Bell, G. 1982The Masterpiece of Nature: The Evolution and Genetics of SexualityUniversity of California PressBerkelyGoogle Scholar
  3. Chekanovskaya, O. V. 1981Aquatic Oligochaeta of the USSRAmerindNew DehliGoogle Scholar
  4. Christensen, B. 1984Asexual propagation and reproductive strategies in aquatic OligochaetaBonomi, G.Erseus, C. eds. Aquatic OligochaetaJunkDordrechtGoogle Scholar
  5. Dumnicka, E. 1996Upstream–downstream movement of macrofauna (with special reference to oligochaetes) in the River Raba below a reservoirHydrobiologia334193198Google Scholar
  6. Hamilton, W. D., Axelrod, R., Tanese, R. 1990Sexual reproduction as an adaptation to resist parasites (A Review)Proceedings of the National Academy of Science8735663573Google Scholar
  7. Hughes, B. D., 1975. A study of a polluted river. Unpublished Ph.D. Thesis, University of Wales.Google Scholar
  8. Hughes, R. N. 1989A Functional Biology of Clonal AnimalsChapman and HallLondonGoogle Scholar
  9. Hurst, L. D., Hamilton, W. D., Ladle, R. J. 1992Covert sexTrends in Ecology and Evolution7144145Google Scholar
  10. Koella, J. C. 1988The tangled bank hypothesisJournal of Evolutionary Biology295116Google Scholar
  11. Ladle, M. 1971Studies on the biology of oligochaetes from the phraetic waters of an exposed gravel bedInternational Journal of Speleology3311316Google Scholar
  12. Ladle, R. J. 1992Parasites and sex: catching the red QueenTrends in Ecology and Evolution7405408CrossRefGoogle Scholar
  13. Ladle, R. J., 1994. The evolution of reproductive strategies in freshwater ecosystems: effects of population sub-division on the evolution and maintenance of sexual reproduction. Unpublished D.Phil Thesis, University of Oxford.Google Scholar
  14. Learner, M. A., Lochhead, G., Hughes, B. D. 1978A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environmentFreshwater Biology8357375Google Scholar
  15. Lochhead, G., Learner, M. A. 1984The cocoon and hatchling of Nais variabilis (Naididae: Oligochaeta)Freshwater Biology14189193Google Scholar
  16. Loden, M. S. 1981Reproductive ecology of the Naididae (Oligochaeta)Hydrobiologia83115123Google Scholar
  17. Lomnicki, A. 2001Carrying capacity, competition and maintenance of sexualityEvolutionary Ecology Research3603610Google Scholar
  18. Mason, C. F. 1977Populations and production of benthic animals in two contrasting shallow water lakes in NorfolkJournal of Animal Ecology46147172Google Scholar
  19. Mehra, H. R. 1920On the sexual phase of certain Indian NaididaeProceedings of the Zoological Society London31457465Google Scholar
  20. Schierwater, B., Hauenschild, C. 1990aA photoperiod determined life-cycle in an oligochaete wormBiological Bulletin17811117Google Scholar
  21. Schierwater, B., Hauenschild, C. 1990bThe position and consequences of a vegetative mode of reproduction in the life cycle of a hydromedusa and an oligochaete wormAdvances in Invertebrate Reproduction53742Google Scholar
  22. Sibly, R. M., Calow, P. 1982Asexual reproduction in protozoa and invertebratesJournal of Theoretical Biology96401424CrossRefGoogle Scholar
  23. Stephenson, J. 1930The OligochaetaClarendon PressOxfordGoogle Scholar
  24. Soumalainen, E. 1950Parthenogenesis in AnimalsAdvances in Genetics3193253Google Scholar
  25. Watling, L. 1975Analysis of structural variations in a shallow esturine deposit feeding communityJournal of Experimental Marine Biology and Ecology19275313CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.School of Geography and the EnvironmentOxford UniversityUK
  2. 2.Marine Biology Laboratory, Department of Biological SciencesNational University of SingaporeSingapore

Personalised recommendations