Hydrobiologia

, Volume 539, Issue 1, pp 205–224 | Cite as

Historical changes in herbaceous wetland distribution induced by hydrological conditions in Lake Saint-Pierre (St. Lawrence River, Quebec, Canada)

  • Christiane Hudon
  • Pierre Gagnon
  • Jean-Pierre Amyot
  • Guy Létourneau
  • Martin Jean
  • Céline Plante
  • Daniel Rioux
  • Martin Deschênes
Primary Research Paper

Abstract

Historical changes (1961–2002) in the distribution of herbaceous wetland plant associations were inferred from the hydrological regime of Lake Saint-Pierre, a 312 km2 broadening of the St. Lawrence River (Quebec, Canada), to assess the cumulative effects of human interventions and climatic variability. Relative abundance index (height × percent cover) of wetland plants in 630 field quadrats sampled at 13 sites (1999–2002) were used to derive a model predicting the occurrence of nine herbaceous plant classes with a 71% (24–84%) accuracy. Wetland types included seasonally dry (meadows), mudflats and wet (low marshes and submerged) assemblages. Over the 1961–2002 period, the total surface area of Lake Saint-Pierre herbaceous wetlands ranged between 11 (in 1972) and 128 (in 2001) km2 and was negatively correlated (Spearman r = −0.86, p < 0.0001) to average water level during the current growing season. Within-season variability and level conditions over the previous season defined 5 marsh assemblages characterized by different species composition, relative abundance and diversity. Significant hydrological variables included quadrat elevation, water depth, number of days flooded and depth variability experienced over the current and/or previous growth seasons. The hydrological model suggests that for a given level, wetland plant assemblages differed markedly whether the multi-year sequence of water levels was rising or falling. Lake Saint-Pierre alternated between three broad-scale wetland configurations, dominated by meadows and open marsh with floating-leaved vegetation (in the 1960s), scattered tall Scirpus marshes (in the 1970s and early 1980s) and closed marsh with aggressive emergents (since 1996). The strong response of Lake Saint-Pierre wetlands to hydrological conditions in the current and previous growth seasons underlines their vulnerability to future water level variations resulting from regulation and climate variability.

Keywords

river wetlands herbaceous plant associations hydrology water level St. Lawrence River Lake Saint-Pierre historical changes CART model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L., Friedman, J., Ohlsen, R., Stone, C. 1984Classification and Regression TreesWadsworthBelmont, CAGoogle Scholar
  2. Bunn, S.E., Arthington, AH. 2002Basic principles and ecological consequences of altered flow regimes for aquatic biodiversityEnvironmental Management30492507CrossRefPubMedGoogle Scholar
  3. Buteau, P., N. Dignard Grondin P., 1994. Système de classification des milieux humides du Québec. MB 94-01. Gouvernement du Québec, Ministère des Ressources Naturelles, Secteur des mines, 25 ppGoogle Scholar
  4. Carpenter, S.R., Lodge, DM. 1986Effects of submersed macrophytes on ecosystem processesAquatic Botany26341370CrossRefGoogle Scholar
  5. Carpentier, A. 2003La régularisation du Saint-LaurentLe Naturaliste Canadien127102113Google Scholar
  6. Casselman, J.M., Lewis, CA. 1996Habitat requirements of northern pike (Esox lucius)Canadian Journal of Fisheries and Aquatic Sciences53161174CrossRefGoogle Scholar
  7. Chambers, P.A., DeWreede, RE., Irlandi, E.A., Vandermeulen, H. 1999Management issues in aquatic macrophyte ecology: a Canadian perspectiveCanadian Journal of Fisheries and Aquatic Sciences77471487Google Scholar
  8. Cléonique-Joseph, F., 1936. Étude de développement floristique en Laurentie. Contributions du Laboratoire de Botanique de l’Université de Montréal No. 27Google Scholar
  9. Dansereau, P., 1959. Phytogeographia Laurentiana. II. The principal plant associations of the St. Lawrence River Valley. Contributions de l’Institut Botanique de l’Université de Montréal 75, p. 148Google Scholar
  10. Day, R.T., Keddy, PA., McNeill, J., Carleton, T. 1988Fertility and disturbance gradients: a summary model for riverine marsh vegetationEcology6910441054Google Scholar
  11. Décamps, H., Planty-Tabacchi, A.M., Tabacchi, A. 1995Changes in the hydrological regime and invasions by plant species along riparian systems of the Adour river, FranceRegulated Rivers – Research Management112333Google Scholar
  12. EC, Environment Canada, 1996. State of the Environment Report on the St. Lawrence River. Volumes 1 and 2. St. Lawrence Update Series. St. Lawrence Centre. Environment Canada – Quebec Region, Conservation Branch and Éditions MultiMondes, Montreal, Quebec, CanadaGoogle Scholar
  13. Fleurbec,  1987Plantes sauvages des lacs, rivières et tourbièresGroupe Fleurbec. Guide d’identification Fleurbec. Saint-Augustin (Portneuf)Quebec, CanadaGoogle Scholar
  14. Gauthier, B., 1997. Politique de protection des rives, du littoral et des plaines inondables. Direction de la conservation et du patrimoine écologique. Ministère de l’Environnement et de la Faune du Québec, 25 ppGoogle Scholar
  15. Herdendorf, C. E., S. M. Hartley M. D. Barnes (eds), 1981. Fish and Wildlife Resources of the Great Lakes Coastal Wetlands within the United States, Volume I. U.S. Fish Wildlife Service, Washington, DC, 469 ppGoogle Scholar
  16. Hill, N.M., Keddy, P.A., Wisheu, IC. 1998A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirsEnvironmental Management22723736CrossRefPubMedGoogle Scholar
  17. Hudon, C. 1997Impact of water-level fluctuations on StLawrence River aquatic vegetation. Canadian Journal of Fisheries and Aquatic Sciences5428532865Google Scholar
  18. Hudon, C. 2004Shift in wetland plant composition and biomass following low-level episodes in the StLawrence River: looking into the future. Canadian Journal of Fisheries and Aquatic Sciences61603617Google Scholar
  19. Jean, M., Bouchard, A. 1991Temporal changes in wetland landscapes of a section of the StLawrence River, Canada. Environmental Management15241250Google Scholar
  20. Jean, M., G. Létourneau, C. Lavoie Delisle F., 2002. Les milieux humides et les plantes exotiques en eau douce. Bureau de coordination de Saint-Laurent Vision 2000, Sainte-Foy, Quebec, Canada, 8 ppGoogle Scholar
  21. Kaminski, R.M., Prince, HH. 1981Dabbling duck and aquatic macroinvertebrate responses to manipulated wetland habitatJournal of Wildlife Management45115Google Scholar
  22. Keddy, P.A. 1989Effects of competition from shrubs on herbaceous wetland plants: a 4-year field experimentCanadian Journal of Botany67708716Google Scholar
  23. Keddy, P.A. 2002Wetland Ecology – Principles and Conservation, Cambridge Studies in Ecology2Cambridge University PressCambridge618Google Scholar
  24. Keddy, P.A., Reznicek, AA. 1986Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seedsJournal of Great Lakes Research122536Google Scholar
  25. Keetch, J. Byram GM., 1968. A drought index for forest fire control. Forest Experimental Station, USDA Forest Service Research SE-38, 32 ppGoogle Scholar
  26. Lalonde, S. G. Létourneau, 1996. Sensibilité de la télédétection spatiale pour le suivi des milieux humides. St. Lawrence Centre, Environment Canada – Quebec Region, Montreal, Quebec, CanadaGoogle Scholar
  27. Lance, G.N., Williams, WT. 1967A general theory of classificatory sorting strategies, IHierarchical systems. Computer Journal9373380Google Scholar
  28. Lavoie, C., Jean, M., Delisle, F., Létourneau, G. 2003Exotic plant species of the StLawrence River Wetlands: a spatial and historical analysis. Journal of Biogeography30537549Google Scholar
  29. Legendre L., Legendre P. (1983). Numerical Ecology, 2nd edn. Developments in Environmental Modelling,Vol. 3. Elsevier, Amsterdam, 419 ppGoogle Scholar
  30. Marie-Victorin, Fr. 1934Le fleuve Saint-Laurent, milieu biologique pour les plantes vasculairesTrans. Royal Society of Canada Section V, Series III2817Google Scholar
  31. Marie-Victorin, Fr. 1943Observations botaniques sur les effets d’une exceptionnelle baisse de niveau du Saint-Laurent durant l’été de 1931Contributions de l’Institut Botanique de l’Université de Montréal482128Google Scholar
  32. Marie-Victorin Fr. (1995). Flore laurentienne, 3rd edition updated and annotated by Luc Brouillet et al., Presses de l’Université de Montréal, Quebec, Canada, 1093 ppGoogle Scholar
  33. Magnuson, J.J., Webster, KE., Assel, RA., Bowser, CJ., Dillon, PJ., Eaton, JG., Evans, HE., Fee, EJ., Hall, RI., Mortsch, LR., Schindler, D.W., Quinn, FH. 1997Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield Regional Hydrological Proceedings11825871Google Scholar
  34. MENV, Ministère de l’environnement, 2003. Synthèse des informations environnementales disponibles en matière agricole au Québec. Direction de politiques du secteur agricole, ministère de l’Environnement, Québec, Envirodoq ENV/2003/0025, 143 ppGoogle Scholar
  35. Morin, J. Bouchard A., 2001. Les bases de la modélisation du Tronçon Montréal/Trois-Rivières. Scientific Report RS-100. Meteorological Service of Canada. Hydrology, Environment Canada – Quebec Region, Sainte-Foy, Quebec, CanadaGoogle Scholar
  36. Nilsson, C., Keddy, PA. 1988Predictability of change in shoreline vegetation in a hydroelectric reservoir, northern SwedenCanadian Journal of Fisheries and Aquatic Sciences4518961904Google Scholar
  37. Nilsson, C., Svedmark, M. 2002Basic principles and ecological consequences of changing water regimes: riparian plant communitiesEnvironmental Management30468480PubMedGoogle Scholar
  38. Petts, G.E. 1984Impounded Rivers – Perspectives for Ecological Management Wiley–InterscienceJohn Wiley SonsNew YorkGoogle Scholar
  39. Poff, N.L., Allan, JD., Bain, MB., Karr, JR., Prestegaard, KL., Richter, BD., Sparks, R.E., Stromberg, JC. 1997The natural flow regime – A paradigm for river conservation and restorationBioScience47769784Google Scholar
  40. Reed, P. B., 1988. National List of Plant Species that Occur in Wetlands: National Summary. Biological Report 88 (24). US Fish Wildlife ServiceGoogle Scholar
  41. Shipley, B., Keddy, P.A., Lefkovitch, LP. 1991Mechanisms producing plant zonation along a water depth gradient: a comparison with the exposure gradientCanadian Journal of Botany6914201424Google Scholar
  42. Ter Braak C.J.F., Smilauer P. (1998). Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power. Ithaca, NY, USA, 352 ppGoogle Scholar
  43. Toner, M., Keddy, PA. 1997River hydrology and riparian wetlands: a predictive model for ecological assemblyEcological Applications7236246Google Scholar
  44. Van der Valk, A.G. 1994Effects of prolonged flooding on the distribution and biomass of emergent species along a freshwater wetland coenoclineVegetatio110185196Google Scholar
  45. Van der Valk, A.G., Davis, C.B. 1978The role of seed banks in the vegetation dynamics of prairie glacial marshesEcology59322335Google Scholar
  46. Ward, J.V., Tockner, K., Schiemer, F. 1999Biodiversity of floodplain river ecosystems: ecotones and connectivityRegulated Rivers – Research Management15125139Google Scholar
  47. Wilcox, D.A., Whillans, TH. 1999Techniques for restoration of disturbed coastal wetlands of the Great LakesWetlands19835857Google Scholar
  48. Wilcox, D.A., Meeker, JE., Hudson, PL., Armitage, BJ., Black, M.G., Uzarski, DG. 2002Hydrologic variability and the application of Index of Biotic Integrity metrics to wetlands: a Great Lakes evaluationWetlands22588615Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Christiane Hudon
    • 1
  • Pierre Gagnon
    • 1
  • Jean-Pierre Amyot
    • 1
  • Guy Létourneau
    • 1
  • Martin Jean
    • 1
  • Céline Plante
    • 1
  • Daniel Rioux
    • 1
  • Martin Deschênes
    • 1
  1. 1.Environment CanadaSt. Lawrence CentreMontrealCanada

Personalised recommendations