, Volume 530, Issue 1–3, pp 283–290 | Cite as

Evolution and dynamics of branching colonial form in marine modular cnidarians: gorgonian octocorals



Multi-branched arborescent networks are common patterns for many sessile marine modular organisms but no clear understanding of their development is yet available. This paper reviews new findings in the theoretical and comparative biology of branching modular organisms (e.g. Octocorallia Cnidaria) and new hypotheses on the evolution of form are discussed. A particular characteristic of branching Caribbean gorgonian octocorals is a morphologic integration at two levels of colonial organization based on whether the traits are at the module or colony level. This revealed an emergent level of integration and modularity produced by the branching process itself and not entirely by the module replication. In essence, not just a few changes at the module level could generate changes in colony architecture, suggesting uncoupled developmental patterning for the polyp and branch level traits. Therefore, the evolution of colony form in octocorals seems to be related to the changes affecting the process of branching. Branching in these organisms is sub-apical, coming from mother branches, and the highly self-organized form is the product of a dynamic process maintaining a constant ratio between mother and daughter branches. Colony growth preserves shape but is a logistic growth-like event due to branch interference and/or allometry. The qualitative branching patterns in octocorals (e.g. sea feathers, fans, sausages, and candelabra) occurred multiple times when compared with recent molecular phylogenies, suggesting independence of common ancestry to achieve these forms. A number of species with different colony forms, particularly alternate species (e.g. sea candelabrum), shared the same value for an important branching parameter (the ratio of mother to total branches). According to the way gorgonians branch and achieve form, it is hypothesized that the diversity of alternate species sharing the same narrow variance in that critical parameter for growth might be the product of canalization (or a developmental constraint), where uniform change in growth rates and maximum colony size might explain colony differences among species. If the parameter preserving shape in the colonies is fixed but colonies differ in their growth rates and maximum sizes, heterochrony could be responsible for the evolution among some gorgonian corals with alternate branching.


colonial organisms heterochrony Cnidaria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerly, D. D., Donoghue, M. J. 1998Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in Maples (Acer)American Naturalist752767791Google Scholar
  2. Aerne, B. L., Groger, H., Schuchert, P., Spring, J., Schmid, V. 1996The polyp and its medusa: a molecular approachScientia Marina60716Google Scholar
  3. Bayer, F. M. 1953Zoogeography and evolution in the octocorallian family GorgoniidaeBulletin of Marine Science of the Gulf and Caribbean3100119Google Scholar
  4. Bayer, F. M. 1973

    Colonial organization in Octocorals

    Boardman, R. S.Cheetham, A. H.Oliver, W. A. eds. Animal Colonies, Development and Function through Time. DowdenHutchinson & RossStroudsburg6993
    Google Scholar
  5. Bayer, F. M., Muzik, K. M. 1976A new solitary octocoral, Taiaroa tauhou gen. et sp. nov. (Coelenterata: Protoalcyonaria) from New ZealandJournal of the Royal Society of New Zealand6499515Google Scholar
  6. Bayer, F. M., Grasshoff, M., Verseveldt, J. 1983An Illustrated Trilingual Glossary of Morphological and Anatomical Terms Applied to OctocoralliaE. J. BrillLeiden, The NetherlandsGoogle Scholar
  7. Berntson, E. A., Bayer, F. M., McArthur, A. G., France, S. C. 2001Phylogenetic relationships within the Octocorallia (Cnidaria: Anthozoa) based on nuclear 18S rRNA sequencesMarine Biology138235246CrossRefGoogle Scholar
  8. Blackstone, N. W. 1999Redox control in development and evolution: evidence from colonial hydroidsJournal of Experimental Biology20235413553PubMedGoogle Scholar
  9. Blackstone, N. W. 2000Redox control and the evolution of multicellularityBioEssays22947953CrossRefPubMedGoogle Scholar
  10. Blackstone, N. W., Buss, L. 1993Experimental heterochrony in hydractinid hydroids: why mechanisms matterJournal of Evolutionary Biology6307327CrossRefGoogle Scholar
  11. Buss, L. W. 2001

    Growth by intussusception in Hydractiniid hydroids

    Jackson, J. B. C.Lidgard, S.McKinney, F. K. eds. Evolutionary Patterns: Growth, Form, and Tempo in the Fossil RecordUniversity of Chicago PressChicago326
    Google Scholar
  12. Cartwright, P., Buss, L. W. 1999Colony integration and the expression of the Hox gene, Cnox-2, in Hydractinia symbiologicarpus (Cnidaria: Hydrozoa)Journal of Experimental Zoology2855762CrossRefPubMedGoogle Scholar
  13. Cartwright, P., Bowsher, J., Buss, L. W. 1999Expression of a Hox gene, Cnox-2, and the division of labor in a colonial hydroidProceedings of the National Academy of Sciences of the USA9621832186CrossRefPubMedGoogle Scholar
  14. Coma, R., Ribes, M., Zabala, M., Gili, J. -M. 1998Growth in a modular colonial marine invertebrateEstuarine and Coastal Shelf Science47459470Google Scholar
  15. Debat, V., David, P. 2001Mapping phenotypes: canalization, plasticity and developmental stabilityTrends in Ecology and Evolution16555561CrossRefGoogle Scholar
  16. Finnerty, J. R., Martindale, M. Q. 1997Homeoboxes in sea anemones (Cnidaria: Anthozoa): a PCR-based survey of Nematostella vectensis and Metridium senileBiological Bulletin1936276PubMedGoogle Scholar
  17. France, S. C., Rosel, P. E., Agenbroad, J. E., Mullineaux, L. S., Kocher, T. D. 1996DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two-subclass organization of the Anthozoa (Cnidaria)Molecular Marine Biology and Biotechnology51528PubMedGoogle Scholar
  18. Gould, S. J. 1977Ontogeny and PhylogenyBelknap PressCambridgeGoogle Scholar
  19. Hughes, R. N. 1983Evolutionary ecology of colonial reef-organisms, with particular reference to coralsBiological Journal of the Linnaean Society203958Google Scholar
  20. Jackson, J. B. C. 1977Competition on marine hard substrata: the adaptive significance of solitary and colonial strategiesAmerican Naturalist111743767CrossRefGoogle Scholar
  21. Kaandorp, J. A., Kübler, J. 2001The Algorithmic Beauty of Seaweeds, Sponges and CoralsSpringer-VerlagAmsterdamGoogle Scholar
  22. Kapela, W., Lasker, H. R. 1999Size-dependent reproduction in the Caribbean gorgonian Pseudoplexaura porosaMarine Biology135107114CrossRefGoogle Scholar
  23. Kaufmann, K. W. 1981Fitting and using growth curvesOecologia49293299CrossRefGoogle Scholar
  24. Kossevitch, I. A., Herrmann, K., Berking, S. 2001Shaping of colony elements in Laomedea flexuosa Hinks (Hydrozoa, Thecaphora) includes a temporal and spatial control of skeleton hardeningBiological Bulletin201417423PubMedGoogle Scholar
  25. Kuhn, K., Streit, B., Schierwater, B. 1999Isolation of Hox genes from the Scyphozoan Cassiopeia xamachana: implications for the early evolution of Hox genesJournal of Experimental Zoology2856375CrossRefPubMedGoogle Scholar
  26. Lasker, H. R., Sánchez, J. A. 2002

    Allometry and Astogeny of modular organisms

    Hughes, R. N. eds. Reproductive Biology of Invertebrates, Vol. XI. Progress in Asexual ReproductionJohn WileyNew York207253
    Google Scholar
  27. Lasker, H. R., M. L. Boller, J. Castanaro & J. A Sánchez, 2004. Modularity and determinate growth in a gorgonian coral. Biological Bulletin.Google Scholar
  28. Lewontin, R. C. 1966On the measurement of relative variabilitySystematic Zoology15141142Google Scholar
  29. McKinney, F. K., Raup, D. M. 1982A turn in the right direction: simulation of erect spiral growth in the bryozoans Arquimedes and BugulaPaleobiology8101112Google Scholar
  30. McKinney, M. L. 1988

    Classifying heterochrony allometry, size, and time

    McKinney, M. L. eds. Heterochrony in Evolution. A Multidisciplinary ApproachPlenum PressNew York1734
    Google Scholar
  31. McNamara, K.J. 1995Evolutionary Change and HeterochronyJohn Wiley & SonsNew YorkGoogle Scholar
  32. Müller, W. A., Hauch, A., Plickert, G. 1987Morphogenetic factors in hydroids. I. Stolon tip activation and inhibitionJournal of Experimental Zoology243111124Google Scholar
  33. Pandolfi, J. M. 1988

    Heterochrony in colonial marine animals

    McKinney, M. L. eds. Heterochrony in Evolution. A Multidisciplinary ApproachPlenum Press New York135158
    Google Scholar
  34. Pigliucci, M., Marlow, E. T. 2001Differentiation for flowering time and phenotypic integration in Arabidopsis thaliana in response to season length and vernalizationOecologia127501508CrossRefGoogle Scholar
  35. Popadic, A., Abzhanov, A., Ruch, D., Kaufman, T. C. 1998Understanding the genetic basis of morphological evolution: the role of homeotic genes in the diversification of the arthropod bauplanInternational Journal of Developmental Biology42453461PubMedGoogle Scholar
  36. Purugganan, M. D. 1999The molecular evolution of developmentBioEssays29700711Google Scholar
  37. Resnik, D. 1995Developmental constraints and patterns: some pertinent distinctionsJournal of Theoretical Biology173231240CrossRefGoogle Scholar
  38. Rice, S. H. 1997The analysis of ontogenetic trajectories: when a change in size or shape is not heterochronyProceedings of the National Academy of Sciences of the USA94907912PubMedGoogle Scholar
  39. Rinkevich, B. 2002The branching coral Stylophora pistillata: contribution of genetics in shaping colony landscapeIsrael Journal of Zoology487182Google Scholar
  40. Sánchez, J. A. 2002Dynamics and evolution of colony form among branching modular organisms Ph.D. ThesisUniversity at Buffalo (The State University of New York)Buffalo (USA)Google Scholar
  41. Sánchez, J. A., Lasker, H. R. 2004Do multi-branched colonial organisms exceed normal growth after partial mortalityProceedings of the Royal Society of London series B-Biological Sciences (supplement)271S117120Google Scholar
  42. Sánchez, J. A., Lasker, H. R. 2003Patterns of morphologic integration in branching colonies of marine modular organisms: supra-module organization in gorgonian coralsProceedings of the Royal Society of London series B-Biological Sciences27020392044Google Scholar
  43. Sánchez, J. A., Lasker, H. R., Taylor, D. J. 2003aPhylogenetic analyses among octocorals (Cnidaria) according to mitochondrial and nuclear DNA sequences (lsu-rRNA 16S, and ssu-rRNA 18S) support two convergent clades of branching gorgoniansMolecular Phylogenetics Evolution293142Google Scholar
  44. Sánchez, J. A., Mcfadden, C. S., France, S. C., Lasker, R. 2003bMolecular phylogenetic analyses of shallow-water Caribbean octocoralsMarine Biology142975987Google Scholar
  45. Sánchez, J. A., Zeng, W., Coluci, V. R., Simpson, C., Lasker, R. 2003cHow similar are branching networks in natureA view from the ocean: caribbean gorgonian coralsJournal of Theoretical Biology222135138Google Scholar
  46. Sánchez, J. A., Lasker, H. R., Nepomuceno, E. G., Sánchez, J. D., Woldenberg, M. J. 2004Branching and self-organization in marine modular colonial organisms: a modelAmerican Naturalist163E2439PubMedGoogle Scholar
  47. Stebbing, A. R. D. 1981The kinetics of growth control in a colonial hydroidJournal of the Marine Biological Association of the United Kingdom613563CrossRefGoogle Scholar
  48. Waitt, D. E., Levin, D. A. 1993Phenotypic integration and plastic correlations in Phlox drummondii (Polomoniaceae)American Journal of Botany8012241233Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Systematic Biology and Laboratories of Analytical BiologyNational Museum of Natural History (MRC-163), Smithsonian InstitutionWashingtonUSA
  2. 2.Departamento de Ciencias BiológicasUniversidad de los AndesBogotáColombia

Personalised recommendations