, Volume 528, Issue 1–3, pp 217–227 | Cite as

Modelling spatial distributions of Ceratium hirundnella and Microcystis. in a small productive British lake

  • R. Hedger
  • N. Olsen
  • D. George
  • T. Malthus
  • P. Atkinson


The short-term relationships between the spatial distributions of phytoplankton and the environmental conditions of Esthwaite Water, a small eutrophic lake in the English Lake District, UK, were examined using a hydrodynamic model. Spatial distributions of phytoplankton were simulated on two occasions the first, when the population was dominated by dinoflagellates; and the second, when the population was dominated by cyanobacteria.Vertical motility of the dinoflagellate Ceratium hirundinellaand buoyancy of the cyanobacteria Microcystis ssprm.were estimated as functions of irradiance. Water velocity fields were estimated through solving the 3-D Navier–Stokes equations on a finite-volume, unstructured non-orthogonal grid. Simulated circulation patterns of water and phytoplankton were similar to those obtained through field observations. Near-surface drift currents were initiated by wind stress, which then generated return currents along the seasonal thermocline. Aggregations of motile Ceratiumthat existed near the thermocline were pushed upwind by the deep return currents and accumulated at upwelling areas. In contrast, near-surface aggregations of Microcystiswere pushed downwind by the surface currents and accumulated at downwelling areas. Horizontal and vertical phytoplankton distributions resulted from the interaction between the vertical motility of the phytoplankton (dependent upon the light environment) and the velocity vectors at the depths at which the phytoplankton accumulated (dependent upon wind stress and morphometry). Modelling showed that phytoplankton motility and buoyancy greatly affect phytoplankton spatial distributions.

Esthwaite Water dinoflagellates cyanobacteria spatial distributions modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belov, A. P. & J. D. Giles, 1997. Dynamical model of buoyant cyanobacteria. Hydrobiologia 349: 87-97.CrossRefGoogle Scholar
  2. Beaver, J. R. & K. E. Havens, 1996. Seasonal and spatial var-iation in zooplankton community structure and their rela-tionship to possible controlling variables in Lake Okeechobee. Freshwater Biology 36: 45-56.CrossRefGoogle Scholar
  3. Bengtsson, L., 1973. Wind Stress on Small Lakes. Teniska Hxgskolan, Lund, Sweden.Google Scholar
  4. Bowles, C., C. D. Dafferm & S. Ashford-Frost, 1996. The independent validation of SSIIM-a 3D Numerical model, Proceedings of the 4th Hydroinformatics Conference, Copenhagen, Denmark.Google Scholar
  5. Brookes, J. D. & G. G. Ganf, 2001. Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. Journal of Plankton Research 23: 1399-1411.CrossRefGoogle Scholar
  6. Carrick, H., R. P. Barbiero & M. Tuchman, 2001. Variation in Lake Michigan plankton: temporal, spatial and historical trends. Journal of Great Lakes Research 24: 467-485.CrossRefGoogle Scholar
  7. Cullen, J. J. & S. G. Horrigan, 1981. Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ratio, and the photosynthetic capacity of the dinoflagellate, Gymnodium splendens. Marine Biology 62: 81-89.CrossRefGoogle Scholar
  8. Falconer, R. A., D. G. George & P. Hall, 1991. Three-dimensional numerical modelling of wind driven circulation in a shallow homogenous lake. Journal of Hydrology 124: 59-79.CrossRefGoogle Scholar
  9. Figueroa, F. L., F. X. Niell, G. G. Figueiras & M. L. Villarino, 1998. Diel migration of phytoplankton and spectral light eld in the Ria de Vigo (NW Spain). Marine Biology 130: 491-499.CrossRefGoogle Scholar
  10. Fischer-Antze, T., T. Stösser, P. Bates & N. R. B. Olsen, 2001. 3D numerical modelling of open-channel flow with submerged vegetation. Journal of Hydraulic Research 39: 303-310.CrossRefGoogle Scholar
  11. George, D. G., 1993. Physical and chemical scales of pattern in freshwater lakes and reservoirs. Science of the Total Environment 135: 1-15.CrossRefGoogle Scholar
  12. George, D. G. & R. W. Edwards, 1976. The effect of wind on the distribution of chlorophyll-a and crustacean plankton in a shallow eutrophic reservoir. Journal of Applied Ecology 13: 667-690.CrossRefGoogle Scholar
  13. George, D. G. & S. I. Heaney, 1978. Factors in. uencing the spatial distribution of phytoplankton in a small productive lake. Journal of Ecology 66: 135-155.Google Scholar
  14. George, D. G. & D. P. Hewitt, 1999. The influence of year-to-year variations in winter weather on the dynamics of Daphnia and Eudiaptomus in Esthwaite Water, Cumbria. Functional Ecology 13: 45-54.CrossRefGoogle Scholar
  15. George, D. G. & A. H. Taylor, 1995. UK lake plankton and the gulf-stream. Nature 378: 139-139.CrossRefGoogle Scholar
  16. George, D. G., C. M. Allen & D. G. Smith, 1988. The remote sensing of phytoplankton chlorophyll in Esthwaite Water, Cumbria. Proceedings of the NERC 1987 Airborne Campaign Workshop, Swindon, UK.Google Scholar
  17. Harris, G. P., 1994. Pattern, process and prediction in aquatic ecology. A limnological view of some general ecological problems. Freshwater Biology 32: 143-160.CrossRefGoogle Scholar
  18. Heaney, S. I., 1976. Temporal and spatial distribution of the dinoflagellate Ceratium hirundinella O. F. Muller within a productive lake. Freshwater Biology 6: 531-542.CrossRefGoogle Scholar
  19. Heaney, S. I. & T. I. Furnass, 1980. Laboratory models of diel vertical migration in the dinoflagellate Ceratium hirundinella. Freshwater Biology 10: 163-170.CrossRefGoogle Scholar
  20. Heaney, S. I. & J. F. Tailing, 1980. Dynamic aspects of dinoflagellate distribution patterns in a small productive lake. Journal of Ecology 68: 75-94.CrossRefGoogle Scholar
  21. Heaney, S. I., J. W. G. Lund, H. M. Canter & G. Kim, 1988, Population dynamics of Ceratium spp. in three English lakes, 1945-1988. Hydrobiology 161: 133-148.CrossRefGoogle Scholar
  22. Hedger, R. D., N. R. B. Olsen, T. J. Malthus & P. M. Atkinson, 2002. Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll-a concentration. Remote Sensing of Environment 79: 116-122.CrossRefGoogle Scholar
  23. Howard, A., 1997. Computer simulation modelling of buoyancy change in Microcystis. Hydrobiologia 349: 111-117.CrossRefGoogle Scholar
  24. Howard, A., M. J. Kirby, P. E. Kneale & A. T. McDonald, 1995. Modelling the growth of cyanobacteria (GrowScum). Hydrologial Processes 9: 809-821.CrossRefGoogle Scholar
  25. Imberger, J., 1994, Transport processes in lakes: a review. In Margalef, R. (ed.), Limnology Now: a Paradigm of Planetary Problems. Elsevier, Amsterdam: 99-193.Google Scholar
  26. Jin, K-R., J. H. Hamrick & T. Tisdale, 2000. Application of three-dimensional hydrodynamic model for Lake Okeechobee. Journal of Hydraulic Engineering 126: 758-771.CrossRefGoogle Scholar
  27. John, V. C., M. G. Satish & D. H. Waller, 1995. Development and evaluation of numerical hydrodynamic models for small lakes and reservoirs. Canadian Journal of Civil Engineering 22: 270-282.CrossRefGoogle Scholar
  28. Kamykowski, D. & H. Yamazaki, 1997. A study of metabolism-influence orientation in the diel vertical migration of marine dinoflagellates. Limnology and Oceanography 42: 1189-1202.CrossRefGoogle Scholar
  29. Kirk, T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, UK.Google Scholar
  30. Kromkamp, J. & A. E. Walsby, 1990. A computer model of buoyancy and vertical migration in cyanobacteria. Journal of Plankton Research 12: 161-183.CrossRefGoogle Scholar
  31. Lund J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143-170.CrossRefGoogle Scholar
  32. Melaaen, M. C., 1992. Calculation of. uid. ows with staggered and nonstaggered curvilinear nonorthogonal grids-the theory. Numerical Heat Transfer, Part B 21: 1-19.CrossRefGoogle Scholar
  33. Olsen, N. R. B., 2002. Hydroinformatics, fluvial hydraulics and limnology, Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology, www.bygg.ntnu.no/nilsol/sib5050/flures5.pdf.Google Scholar
  34. Olsen, N. R. B., R. D. Hedger & D. G. George, 2000. 3D numerical modeling of Microcystis distribution in a water reservoir. Journal of Environmental Engineering 126: 939-953.CrossRefGoogle Scholar
  35. Padisák, J. E., É. Soróczki-Pintér & Zs. Rezner, 2003. Form-resistance factors of some phytoplankton species. Hydrobiologia 500: 243-257.CrossRefGoogle Scholar
  36. Patankar, S. V., 1980. Numerical Heat Transfer and Fluid Flow. Taylor and Francis, New York, USA.Google Scholar
  37. Reynolds C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge, UK.Google Scholar
  38. Schubert H. & R. M. Forster, 1997. Sources of variability in the factors used for modelling primary productivity in surface waters. Hydrobiologia 349: 75-85.CrossRefGoogle Scholar
  39. Seed D., 1997. River training and channel protection-validation of a 3D numerical model, Report SR 480, HR Walingford, UK.Google Scholar
  40. Tailing, J. F., 2003. Phytoplankton-zooplankton seasonal timing and the 'clear-water phase' in some English lakes. Freshwater Biology 48: 39-52.CrossRefGoogle Scholar
  41. Versteeg H. K. & W. Malalasekera, 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman, London, UK.Google Scholar
  42. Zacharias, I., & G. Ferentinos, 1997. A numerical model for the winter circulation in Lake Trichonis, Greece. Environmental Modelling Software 12: 311-321.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. Hedger
    • 1
  • N. Olsen
    • 2
  • D. George
    • 3
  • T. Malthus
    • 4
  • P. Atkinson
    • 5
  1. 1.Département de BiologieUniversité LavalQuébecCanada
  2. 2.Department of Hydraulic and Environmental EngineeringNorwegian University of Science and Technology, NNorway
  3. 3.Centre for Ecology and Hydrology (Windermere)CumbriaUK
  4. 4.School of GeoSciencesUniversity of EdinburghUK
  5. 5.Department of GeographyUniversity of SouthamptonUK

Personalised recommendations