Temperature Regime and Thermal Stress in a Concrete Massif with Pipe Cooling

  • N. A. AniskinEmail author
  • Nguyen Trong Chuc

Using the Midas Civil 2011 software system, numerical studies were conducted of the temperature regime and thermal stress state of a concrete massif during its construction, for the cases without the use of, and with the use of, pipe cooling. The usage of pipe cooling made it possible to exclude the occurrence of critical values of temperature gradients and thereby minimize the risk of occurrence of thermal fractures.


temperature regime thermal stress concrete massifs temperature fracturing pipe cooling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Aniskin, “Temperature regime of a gravity dam from rolled concrete,” Power Tech. Eng., 40, 23 – 27 (2006).Google Scholar
  2. 2.
    S. M. Ginzburg, T. N. Rukavishnikov, and N. Ya. Sheinker, “Simulation models for estimating the temperature regime of a concrete dam, using the example of the Bureya GÉS,” Izv. VNIIG, 241 (2002).Google Scholar
  3. 3.
    Control of Cracking in Mass Concrete Structure, United States Department of the Interior Bureau of Reclamation (1981).Google Scholar
  4. 4.
    Sandra Lagundžija and Marie Thiam, Temperature Reduction during Concrete Hydration in Massive Structures, Master of Science Project, Stockholm Sweden (2017).Google Scholar
  5. 5.
    Zhenyang Zhu, Sheng Qiang, andWeimin Chen, “A new method solving the temperature field of concrete around cooling pipes,” J. Eng. Mech., 9, (2012).Google Scholar
  6. 6.
    S. M. Ginzburg and V. S. Onishchuk, Pipe Cooling of Concrete Massifs [in Russian], OAO VNIIG im. B. E. Vedeneeva, St. Petersburg (2010).Google Scholar
  7. 7.
    Yong-xing Hong, Wen Chen, Ji Lin, Claws Gong, and Hong-da Cheng, “Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method,” Water Sci. Eng., 10(2), 107 – 114 (2017).Google Scholar
  8. 8.
    T. G. Myers, N. D. Fowkes, and Y. Ballim, “Modeling the cooling of concrete by piped water,” J. Eng. Mech., 135(12), 1375 – 1383 (2009).CrossRefGoogle Scholar
  9. 9.
    Zhu Bofang, Thermal Stresses and Temperature Control of Mass Concrete, United States of America (2014).Google Scholar
  10. 10.
    MIDAS Information Technology, Heat of Hydration — Analysis Manual, Version — 2011 (2011).Google Scholar
  11. 11.
    Vladan Kuzmanovic, Ljubodrag Savic, and Nikola Mladenovic, Thermal-Stress Behaviour of RCC Gravity Dams, Faculty of Mechanical Engineering (2015).Google Scholar
  12. 12.
    N. Aniskin and N. T. Chuc, “Temperature regime of massive concrete dams in the zone of contact with the base,” IOP Conf. Ser. Mater. Sci. Eng. (2018). DOI: 10.1088/1757-899X/365/4/042083.Google Scholar
  13. 13.
    J. Noorzaei, K. H. Bayagoob, A. A. Abdulrazeg, M. S. Jaafar, and T. A. Mohammed, “Three dimensional nonlinear temperature and structural analysis of roller compacted concrete dam,” CMES, 47(1), 43 – 60 (2009).Google Scholar
  14. 14.
    T. Yu. Krat, T. N. Rukavishnikov, and B. E. Vedeneeva, “Estimating the temperature regime and thermal stress state of water discharge units under various conditions of concrete placement,” Izv. VNIIG im. B. E. Vedeneeva, 248, 77 – 85 (2007).Google Scholar
  15. 15.
    S. M. Ginzburg, L. V. Korsakova, N. V. Pavlenko, and B. E. Vedeneev, “Computational studies of the thermal stress of rolled concrete dams,” Izv. VNIIG im. B. E. Vedeneeva, 248, 86 – 93 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Moscow State University of Civil EngineeringMoscowRussia

Personalised recommendations