Power Technology and Engineering

, Volume 52, Issue 4, pp 474–484 | Cite as

Analysis of Transient Recovery Voltage at the Terminals of Breakers Using Current-Limiting Reactors

  • A. S. BrilinskiiEmail author
  • G. A. Evdokunin
  • D. A. Trubin

Current-limiting reactors (CLR) are known to have a significant effect on transition processes during short circuits (SC) leading to excesses beyond the permissible values of the transient recovery voltage (TRV) at the terminals of breakers for short-circuit currents, which in turn can lead to failure of the breakers. It is shown that the traditional (generally accepted) method for calculating transient recovery voltages based on using a circuit with the reactor replaced by lumped parameters is not suitable for magnetized CLR, and in the case of uncontrolled CLR can yield erroneous results. It is argued that there is a need to account for the distribution of the winding parameters of current-limiting reactors in calculations of the TRV at the contacts of breakers as they interrupt short circuits and relevant analytic expressions are derived.


transient recovery voltage current-limiting reactor short circuit breakerþ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RF State Standard GOST R 52565–2006. Alternating Current Breakers. General Technical Conditions [in Russian], Moscow (2006).Google Scholar
  2. 2.
    STO 56947007-–2011. Alternating current breakers for voltages from 3 to 1150 kV. Instructions for choice. Standard of the organization OJSC “FSK EÉS” [in Russian] (2011).Google Scholar
  3. 3.
    G. A. Evdokunin, Electrical Systems and Grids. A Textbook. 4th edition [in Russian], Rodnaya Ladoga, St. Petersburg (2016).Google Scholar
  4. 4.
    M. S. Volkov and Yu. P. Gusev, “Evaluation of the effect of the characteristics of current-limiting reactors on the transient recovery voltage at the contacts of high-voltage breakers during interruption of short circuit currents,” Nauka Obrazov. Nauch. Izd. MGTU im. N. É. Baumana, No. 7, 329 – 336 (2013).Google Scholar
  5. 5.
    D. R. Lyubarskii and A. A. Rubtsov, “Limiting transient recovery voltages using current-limiting reactors in 110 – 220 kV grids,” Élektr. Stantsii, No. 2, 42 – 45 (2017).Google Scholar
  6. 6.
    D. Shoup, J. Paserba, R. G. Colclaser Jr., T. Rosenberger, L. Ganatra, and C. Isaac, “Transient recovery voltage requirements associated with the application of current-limiting series reactors,” Electric Power Syst. Res., 77(11), 1466 – 1474 (2007).CrossRefGoogle Scholar
  7. 7.
    D. Santos and G. Cabriel, “Transient recovery voltages when clearing a fault in presence of series limitation reactors,” in: Int. Conf. on Power Systems Transients, http:__www.ipst.org_techpapers_1999_IPST99 Paper 089.pdf (accessed July 1, 2013).Google Scholar
  8. 8.
    A. S. Brilinskii and G. A. Evdokunin, “Modeling and analysis of the current-limiting properties of a magnetically controlled reactor,” Izv. RAN. Énerget., No. 4, 37 – 48 (2013).Google Scholar
  9. 9.
    A. S. Brilinskii, G. A. Evdokunin, S. V. Smolovik, and Yu. I. Shepel’, “Method for calculating the parameters of major structural components of magnetized current-limiting reactors,” Élektr. Stantsii, No. 11, 42 – 46 (2015).Google Scholar
  10. 10.
    P. L. Kalantarov and L. A. Tseitlin, Calculations of Inductance, A Handbook. 3rd edition [in Russian], Énergoatomizdat, Moscow (1986).Google Scholar
  11. 11.
    Eilert Bjerkan, High Frequency Modeling of Power Transformers, Stresses and Diagnostics. Ph. D. dissertation, Dept. Elect. Power Eng., Norwegian Univ. Sci. Technol., Trondheim, Norway (2005).Google Scholar
  12. 12.
    Yu. Ya. Iossel’, É. S. Kochanov, and M. G. Strunskii, Calculation of Electrical Capacitance. A Handbook. 2nd edition [in Russian], Énergoizdat, Leningrad (1981).Google Scholar
  13. 13.
    K. S. Kemirchyan, N. V. Korovkin, and L. R. Neiman, Theoretical Foundations of Electrical Technology. A Textbook for Universities. 5th edition. In 2 vols. Vol. 1. [in Russian], Piter, St. Petersburg (2009).Google Scholar
  14. 14.
    Operating Instructions for limitation of high-frequency switching overvoltages and protection of electrical equipment in 110 kV and higher distribution systems from them, ORGRÉS, Moscow (1998).Google Scholar
  15. 15.
    P. Hammarlund, Recovery Voltage at the Contacts of a Breaker [Russian translation], Gosénergoizdat, Leningrad (1956).Google Scholar
  16. 16.
    P. G. Grudinskii, G. N. Petrov, M. M. Sokolov, A. M. Fedoseev, M. G. Chilikin, and I. V. Antik, eds., Electrical Technology Handbook. 5th edition. Vol. 1 [in Russian], Énergiya, Moscow (1974).Google Scholar
  17. 17.
    STO 56947007-–2014. Operating instructions for protection from resonant voltage excesses in 6 – 750 kV electrical equipment [in Russian], OAO “FSK EÉS,” Moscow (2014).Google Scholar
  18. 18.
    M. M. Akodis and P. A. Korzun, Determining the Recovery Voltage at Breaker Contacts [in Russian], Énergiya, Moscow (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Brilinskii
    • 1
    Email author
  • G. A. Evdokunin
    • 2
  • D. A. Trubin
    • 3
  1. 1.JSC “NTTs Edinoi énergeticheskoi sistemy (Scientific and Technical Center of the Unified Power System)”St. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnical UniversitySt. PetersburgRussia
  3. 3.JSC “A1-Énergo”St. PetersburgRussia

Personalised recommendations