Advertisement

Human Ecology

, Volume 47, Issue 5, pp 639–651 | Cite as

Belowground and Aboveground Sustainability: Historical Management Change in a Mediterranean Agroecosystem (Les Oluges, Spain, 1860–1959-1999)

  • Lucía DíezEmail author
  • José Ramón Olarieta
  • Enric Tello
Article
  • 87 Downloads

Abstract

We examine the historical evolution of the farming practices linked to the maintenance of soil fertility in a semi-arid Mediterranean village. We analyse the agroecosystem from a sociometabolic perspective at three different points in time (c.1860, 1959, and 1999), focusing on the estimation of the nutrient balances and connecting the assessment of the belowground sustainability with the aboveground dimension of agroecosystem management. Nutrient balances at the aggregated scale were in greater equilibrium in 1860 and 1959 (with results between -7 and 1 kg ha−1) than in 1999 (with nutrient surpluses over 86 kg ha−1), but at the crop system scale nutrient deficits existed at all three points. We discuss the complexity of sustainable farming management assessing the efficiency, effectiveness, and durability of the fertilization techniques. Our conclusions highlight the unsustainable nature of industrialized agriculture and the value of integrated management of agroecosystems to improve agricultural sustainability.

Keywords

Nutrient balances Agricultural sustainability Social metabolism Traditional agricultural management Agroecology Mediterranean Spain 

Notes

Acknowledgments

We would like to thank Xavier Mestre, Josep Maria Llenes and Vicent Torres for their information about the agricultural managements in 1959 and 1999.

Funding Information

This research has been funded by the Spanish project RTI2018-093970-B-C33.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10745_2019_105_MOESM1_ESM.docx (44 kb)
ESM 1 (DOCX 43 kb)

References

  1. Agnoletti, M., and Emanueli, F. (Eds.). (2016). Biocultural Diversity in Europe.  https://doi.org/10.1007/978-3-319-26315-1 Google Scholar
  2. Altieri, M. A. (2004). Linking ecologists and traditional farmers in the search for sustainable agriculture. Frontiers in Ecology and the Environment 2(1): 35–42.  https://doi.org/10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2.CrossRefGoogle Scholar
  3. Bardgett, R. D., and Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature 515(7528): 505–511.  https://doi.org/10.1038/nature13855.CrossRefGoogle Scholar
  4. Barthel, S., Crumley, C., and Svedin, U. (2013). Bio-cultural refugia — Safeguarding diversity of practices for food security and biodiversity. Global Environmental Change 23(5): 1142–1152.  https://doi.org/10.1016/j.gloenvcha.2013.05.001.CrossRefGoogle Scholar
  5. Bellamy, J. (1999). Marx ‘s theory of metabolic rift: Classical foundations for environmental sociology. American Journal of Sociology 105(2): 366–405.CrossRefGoogle Scholar
  6. Bignal, E. M., and McCracken, D. I. (2000). The nature conservation value of European traditional farming systems. Environmental Reviews 8(3): 149–171.  https://doi.org/10.1139/er-8-3-149.CrossRefGoogle Scholar
  7. Blondel, J. (2006). The “design” of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period. Human Ecology 34(5): 713–729.  https://doi.org/10.1007/s10745-006-9030-4.CrossRefGoogle Scholar
  8. Bosch Serra, A. D., Iglesias Fernández, N., Amat Bové, M., and Boixadera Llobet, J. (2007). Efficiency of nitrogen in slurry and mineral fertilisation under rain-fed Mediterranean agriculture. In A. D. Bosch Serra, M. R. Teira Esmatges, and J. M. Villar Mir (Eds.), Towards a better efficeincy in N use. Universitat de Lleida.Google Scholar
  9. Brussaard, L., de Ruiter, P. C., and Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment 121(3): 233–244.  https://doi.org/10.1016/j.agee.2006.12.013.CrossRefGoogle Scholar
  10. Cushman, G. T. (2013). Guano and the opening of the Pacific world: A global ecological history, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  11. De Deyn, G. B., and Van Der Putten, W. H. (2005). Linking aboveground and belowground diversity. Trends in Ecology & Evolution 20(11): 625–633.  https://doi.org/10.1016/j.tree.2005.08.009.CrossRefGoogle Scholar
  12. Díez, L., Cussó, X., Padró, R., Marco, I., Cattaneo, C., Olarieta, J. R., Garrabou, R., and Tello, E. (2018). More than energy transformations: A historical transition from organic to industrialised farm systems in a Mediterranean village (Les Oluges, Catalonia, 1860-1959-1999). International Journal of Agricultural Sustainability 16(4–5): 399–417.  https://doi.org/10.1080/14735903.2018.1520382.CrossRefGoogle Scholar
  13. Eichhorn, M. P., Paris, P., Herzog, F., Incoll, L. D., Liagre, F., Mantzanas, K., Mayus, M., Moreno, G., Papanastasis, P., Pilbeam, D. J., Pisanelli, A., and Dupraz, C. (2006). Silvoarable systems in Europe - past, present and future prospects. Agroforestry Systems 67(1): 29–50.  https://doi.org/10.1007/s10457-005-1111-7.CrossRefGoogle Scholar
  14. Fernández-Escobar, R., Sánchez-Zamora, M. A., García-Novelo, J. M., and Molina-Soria, C. (2015). Nutrient removal from olive trees by fruit yield and pruning. HortScience 50(3): 474–478.CrossRefGoogle Scholar
  15. Galán del Castillo, E. (2015). Socio ecological transition of organic agricultures in Catalonia (late 19th-20th century). B 11617–2015Google Scholar
  16. Garcia-Ruiz, R., González de Molina, M., Guzmán, G., Soto, D., and Infante-Amate, J. (2012). Guidelines for constructing nitrogen, phosphorus, and potassium balances in historical agricultural systems. Journal of Sustainable Agriculture 36(6): 650–682.  https://doi.org/10.1080/10440046.2011.648309.CrossRefGoogle Scholar
  17. Garrabou, R., and González de Molina, M. (2010). La reposición de la fertilidad en los sistemas agrarios tradicionales. Icaria.Google Scholar
  18. Garrabou, R., Naredo, J. M., and Ávila Cano, J. C. (1999). El Agua en los sistemas agrarios: una perspectiva histórica, Visor, Madrid.Google Scholar
  19. Gingrich, S., Haidvogl, G., Krausmann, F., Preis, S., and Garcia-Ruiz, R. (2015). Providing food while sustaining soil fertility in two pre-industrial alpine agroecosystems. Human Ecology 43(3): 395–410.  https://doi.org/10.1007/s10745-015-9754-0.CrossRefGoogle Scholar
  20. Gliessman, S. R. (2015). Agroecology: The ecology of sustainable food systems. CRC Press.Google Scholar
  21. González de Molina, M., and Toledo, V. M. (2014). The social metabolism: A socio-ecological theory of historical change, Springer, Cham.CrossRefGoogle Scholar
  22. Guzmán, G. I., González de Molina, M., and Alonso, A. M. (2011). The land cost of agrarian sustainability. An assessment. Land Use Policy 28(4): 825–835.  https://doi.org/10.1016/j.landusepol.2011.01.010.CrossRefGoogle Scholar
  23. Guzmán, G. I., Aguilera, E., García-Ruíz, R., Torremocha, E., Soto-Fernández, D., Infante-Amate, J., and González de Molina, M. (2018). The agrarian metabolism as a tool for assessing agrarian sustainability, and its application to Spanish agriculture (1960-2008). Ecology and Society 23(1): 2.  https://doi.org/10.5751/ES-09773-230102.CrossRefGoogle Scholar
  24. Harris, P. J. (1988). Microbial transformations of nitrogen. In A. Wild (Ed.), Russell’s soil conditions and plant growth (pp. 608–651). Longman.Google Scholar
  25. JCA (1890). Avance Estadístico sobre el cultivo del cereal y de leguminosas asociadas en España. Dirección General de Agricultura, Industria y Comercio.Google Scholar
  26. JCA (1911). La invasión filoxérica en España y estado en 1909 de la reconstrucción del viñedo.Google Scholar
  27. Krausmann, F. (2004). Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in Central Europe. Human Ecology 32(6): 735–772.  https://doi.org/10.1007/s10745-004-6834-y.CrossRefGoogle Scholar
  28. Martin, J. F., Roy, E. D., Diemont, S. A. W., and Ferguson, B. G. (2010). Traditional ecological knowledge (TEK): Ideas, inspiration, and designs for ecological engineering. Ecological Engineering 36(7): 839–849.  https://doi.org/10.1016/j.ecoleng.2010.04.001.CrossRefGoogle Scholar
  29. Mestre, C., and Mestres, A. (1949). Aportación al estudio de la fertilización del suelo por medio de hormigueros (Vol. 109).Google Scholar
  30. Neary, D. G., Klopatek, C. C., DeBano, L. F., and Folliott, P. F. (1999). Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management 122(1–2): 51–71.  https://doi.org/10.1016/S0378-1127(99)00032-8.CrossRefGoogle Scholar
  31. Netting, R. M. C. (1993). Smallholders, householders: Farm families and the ecology of intensive, sustainable agriculture, Stanford Univeristy Press, Stanford (CA).Google Scholar
  32. Öborn, I., Edwards, A. C., Witter, E., Oenema, O., Ivarsson, K., Withers, P. J. A., Nilsson, S. I., and Richert Stinzing, A. (2003). Element balances as a tool for sustainable nutrient management: A critical appraisal of their merits and limitations within an agronomic and environmental context. European Journal of Agronomy 20(1–2): 211–225.  https://doi.org/10.1016/S1161-0301(03)00080-7.CrossRefGoogle Scholar
  33. Oenema, O., Kros, H., and De Vries, W. (2003). Approaches and uncertainties in nutrient budgets: Implications for nutrient management and environmental policies. European Journal of Agronomy 20(1–2): 3–16.  https://doi.org/10.1016/S1161-0301(03)00067-4.CrossRefGoogle Scholar
  34. Olarieta, J. R., and Padró, R. (2016). Investment in Landesque Capital in semiarid environments: Dry-stone terraces in Les Oluges (La Segarra, Catalunya). Annales-Anali Za Istrske in Mediteranske Studije - series Historia et Sociologia 26(3): 487–498.  https://doi.org/10.19233/ASHS.2016.29.CrossRefGoogle Scholar
  35. Olarieta, J. R., Padró, R., Masip, G., Rodríguez-Ochoa, R., and Tello, E. (2011). “Formiguers”, a historical system of soil fertilization (and biochar production?). Agriculture, Ecosystems and Environment 140(1–2): 27–33.  https://doi.org/10.1016/j.agee.2010.11.008.CrossRefGoogle Scholar
  36. Oliver, Y. M., Robertson, M. J., and Weeks, C. (2010). A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions. Agricultural Water Management 98(2): 291–300.  https://doi.org/10.1016/j.agwat.2010.08.024.CrossRefGoogle Scholar
  37. Peoples, M. B., Bowman, A. M., Gault, R. R., Herridge, D. F., McCallum, M. H., McCormick, K. M., Norton, R. M., Rochester, I. J., Scammell, G. J., and Schwenke, G. D. (2016). Factors regulating the contributions of fixed nitrogen by pasture and crop legumes to different farming systems of eastern Australia. Plant and Soil 228(1): 29–41.CrossRefGoogle Scholar
  38. Plieninger, T., Höchtl, F., and Spek, T. (2006). Traditional land-use and nature conservation in European rural landscapes. Environmental Science and Policy 9(4): 317–321.  https://doi.org/10.1016/j.envsci.2006.03.001.CrossRefGoogle Scholar
  39. Pujadas i Rúbies, R., Solé i Roig, S., and Pujadas, I. (1980). L’Economia de la Segarra: Especialització agrícola i desenvolupament ramader, Caixa d’Estalvis de Catalunya, Barcelona.Google Scholar
  40. Roxas Clemente, S. (1808). Sobre los hormigueros u hornillos. Semanario de Agricultura y Artes 588: 209–216.Google Scholar
  41. Sandor, J. A. (2006). Ancient agricultural terraces and soils. In Warkentin, B. P. (ed.), Footprints in the soil, Elsevier, Amsterdam.Google Scholar
  42. Shiel, R. S. (2006). Nutrient flows in pre-modern agriculture in Europe. In J. R. McNeill and V. Winiwarter (Eds.), Soils and societies. Perspectives from Environmental History. The White Horse Press.Google Scholar
  43. Soroa, J. M. (1953). Prontuario del agricultor y el ganadero (Dossat, Ed.). Madrid.Google Scholar
  44. Tello, E., Garrabou, R., Cussó, X., Olarieta, J. R., and Galán, E. (2012). Fertilizing methods and nutrient balance at the end of traditional organic agriculture in the Mediterranean bioregion: Catalonia (Spain) in the 1860s. Human Ecology 40(3): 369–383.  https://doi.org/10.1007/s10745-012-9485-4.CrossRefGoogle Scholar
  45. Tello, E., Galán, E., Sacristán, V., Cunfer, G., Guzmán, G.I., González de Molina, M., Krausmann, F., Gingrich, S., Padró, R., Marco, I., Moreno-Delgado, D. (2016). Opening the black box of energy throughputs in farm systems: A decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Vallès County, Catalonia, c.1860 and 1999). Ecological Economics 121:160–174.  https://doi.org/10.1016/j.ecolecon.2015.11.012.CrossRefGoogle Scholar
  46. Thiele-Bruhn, S., Bloem, J., de Vries, F. T., Kalbitz, K., and Wagg, C. (2012). Linking soil biodiversity and agricultural soil management. Current Opinion in Environmental Sustainability 4(5): 523–528.  https://doi.org/10.1016/j.cosust.2012.06.004.CrossRefGoogle Scholar
  47. Van der Ploeg, J. D. (2013). Peasants and the art of farming: A Chayanovian manifesto. Fernwood.  https://doi.org/10.3362/9781780448763.
  48. Vicedo i Rius, E., Boixadera Llobet, J., and Olarieta Alberdi, J. R. (1999). Sistema hidráulico, organización de los riego y usos del agua de la huerta de Lleida (1830–1959). In El agua en los sistemas agrarios, (pp. 225–274). Fundación Argentaria, Visor Ediciones.Google Scholar
  49. Wardle, D. A., Bardgett, R. D., Klironomosw, J. N., Setala, H., van der Putten, W. H., and Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science 304(June): 1629–1633.  https://doi.org/10.1126/science.1094875.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Economic History, Institutions, Policy and World Economy, Faculty of Economics and BusinessUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Soil Science and Environment, Engineering School of Agriculture (ETSEA)University of LleidaLleidaSpain

Personalised recommendations